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Abstract. Automated skin lesion classification in the dermoscopy
images is an essential way to improve diagnostic performance and reduce
melanoma deaths. Although deep learning has shown proven advantages
over traditional methods, which rely on handcrafted features, in image
classification, it remains challenging to classify skin lesions due to the
significant intra-class variation and inter-class similarity. In this paper,
we propose a synergic deep learning (SDL) model to address this issue,
which not only uses dual deep convolutional neural networks (DCNNs)
but also enables them to mutually learn from each other. Specifically,
we concatenate the image representation learned by both DCNNs as the
input of a synergic network, which has a fully connected structure and
predicts whether the pair of input images belong to the same class. We
train the SDL model in the end-to-end manner under the supervision of
the classification error in each DCNN and the synergic error. We evalu-
ated our SDL model on the ISIC 2016 Skin Lesion Classification dataset
and achieved the state-of-the-art performance.

1 Introduction

Skin cancer is one of the most common form of cancers in the United States
and many other countries, with 5 million cases occurring annually [1]. Der-
moscopy, a recent technique of visual inspection that both magnifies the skin
and eliminates surface reflection, is one of the essential means to improve diag-
nostic performance and reduce melanoma deaths [2]. Classifying the melanoma
in dermoscopy images is a significant and challenging task in the computer-aided
diagnosis.

Recently, deep learning has led to tremendous success in skin lesion clas-
sification [3-5]. Ge et al. [3] demonstrated the effectiveness of cross-modality
learning of deep convolutional neural networks (DCNNs) by jointly using the
dermoscopy and clinical skin images. Yu et al. [4] proposed to leverage very
deep DCNNs for automated melanoma recognition in dermoscopy images in two
steps — segmentation and classification. Esteva et al. [5] trained a DCNN using
129,450 clinical images for the diagnose of the malignant carcinomas and malig-
nant melanomas and achieved the performance that matches the performance of
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21 board-certified dermatologists. Despite the achievements, this task remains
challenging due to two reasons. First, deep neural network models may overfit
the training data, as there is usually a relative small dermoscopy image dataset
and this relates to the work required in acquiring the image data and then in
image annotation [6]. Second, the intra-class variation and inter-class similarity
pose even greater challenges to the differentiation of malignant skin lesions from
benign ones [4]. As shown in Fig. 1, there is a big visual difference between the
benign skin lesions (a) and (b) and between malignant lesions (c¢) and (d). Nev-
ertheless, the benign skin lesions (a) and (b) are similar to the malignant lesions
(c) and (d), respectively, in both shape and color.
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Fig. 1. Examples show the intra-class variation and inter-class similarity in skin lesion
classification: (a, b) benign skin lesions, and (c, d) malignant skin lesions

To address the first issue, pre-trained deep models have been adopted, since
it has been widely recognized that the image representation ability learned from
large-scale datasets, such as ImageNet, can be efficiently transferred to generic
visual recognition tasks, where the training data is limited [7-9]. However, it is
still difficult to well address the second issue, despite some attempts reported in
[4,10]. Since hard cases (see Fig. 1) may provide more discriminatory information
than easy ones [11], we, inspired by the biometrical authentication, suggest using
dual DCNNs to learn from pairs of images such that the misclassification of a
hard case leads to a synergic error, which can then be used to further supervise
the training of both DCNN components.

Specifically, we propose a synergic deep learning (SDL) model for skin lesion
classification in dermoscopy images, which consists of dual pre-trained DCNNs
and a synergic network. The main uniqueness of this model includes: (1) the dual
DCNNs learn the image representation simultaneously from pairs of images,
including two similar images in different categories and two dissimilar images
in the same category; (2) the synergic network, which has a fully connected
structure, takes the concatenation the image representation learned by both
DCNNs as an input and predicts whether the pair of images belong to the
same class; (3) the end-to-end training of the model is supervised by both the
classification error in each DCNN and the synergic error; and (4) the synergic
error, which occurs when at least one DCNN misclassify an image, enables dual
DCNNSs to mutually facilitate each other during the learning. We evaluated our
SDL model on the ISIC 2016 Skin Lesion Classification dataset [2] and achieved
an accuracy of 85.75% and an average precision of 0.664, which is the current
state-of-the-art.
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2 Datasets

The ISIC 2016 Skin Lesion Classification dataset [2], released by the Interna-
tional Skin Imaging Collaboration (ISIC), is made up of 900 training and 379
test images which are screened for both privacy and quality assurance. Lesions in
dermoscopic images are all paired with a gold standard (definitive) malignancy
diagnosis, i.e. benign or malignant. The training set is comprised of 727 benign
lesion images and 173 malignant lesion images, and the test set consists of 304
benign and 75 malignant ones.

3 Method

The proposed SDL model (see Fig.2) consists of three modules: an input layer,
dual DCNN components (DCNN-A/B) and a synergic network. The input layer
takes a pair of images as input. Each DCNN component serves to learn inde-
pendently the images representation under the supervision of class labels. The
synergic network verifies whether the input image pair belongs to the same cat-
egory or not and gives the corrective feedback if a synergic error occurs. We now
delve into each of the three modules.

Input Layer

Fig. 2. Architecture of the proposed SDL model which has an input layer, dual DCNN
components (DCNN-A/B) and a synergic network.

3.1 Input Layer

Different from traditional DCNNs, the proposed SDL model accepts a pair of
images as an input, which are randomly selected from the training set. Each
image, together with its class label, is put into a DCNN component, and each
pair of images has a corresponding synergic label that is fed into the synergic
network. To unify the image size, we resized each image to 224 x 224 x 3 using
the bicubic interpolation.
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3.2 Dual DCNN Components

Although a DCNN with any structures can be embedded in the SDL model as
a DCNN component, we chose a pre-trained residual network with 50 learnable
layer (ResNet-50) [12] for both DCNN components, due to the trade-off between
the image classification performance and the number of parameters. To adapt
ResNet-50 to our problem, we replaced the original classification layer with a
fully connected layer of 1024 neurons, a fully connected layer of K (the number
of classes) neurons and a softmax layer, and initialized the parameters of these
layers by sampling a uniform distribution U(—0.05,0.05). Then, we used an
image sequence X = {x1, 2, ...,z } and a corresponding class label sequence
Y = {y1,y2,...,yn } to fine-tune each DCNN component, aiming to find a set of
parameters 8 that minimizes the following cross-entropy loss
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We adopted the mini-batch stochastic gradient descent (mini-batch SGD) algo-
rithm with a batch size of 32 as the optimizer. The obtained parameter sets for
DCNN-A and DCNN-B are denoted by 8(4) and (5)| respectively, which are
not shared between two DCNNs during the optimization.

3.3 Synergic Network

The synergic network consists of an embedding layer, a fully connected learning
layer and an output layer (see Fig. 2). Let a pair of images (x;, ;) be an input of
the dual DCNNs. We defined the output of the penultimate fully connected layer
in DCNN-A and DCNN-B during the forward computing as the deep feature
learned on image x;, ;, formally shown as follows

Ji= ]—‘(0(‘4),%)

(2)
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Then, we concatenated the deep features learned on both images as an input of
the synergic network, denoted by f;.;, and defined the expected output, i.e. the
synergic label of the image pair, as

Lif yi=y;
T, x;) = . . 3
vs (@0 2)) {o if vy ®)
To avoid the unbalance data problem, we set the percentage of intra-class image
pairs is about 45%-55% in each batch. It is convenient to monitor the synergic
signal by adding another sigmoid layer and using the following binary cross
entropy loss

19(09)) = yslogp(ys = 0| fio;; 09) + (1 — ys)logp(ys = 1|fi0;:0'%))  (4)
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where (%) is the parameters of the synergic network. If one DCNN makes a
correct decision, the mistake made by the other DCNN leads to a synergic error
that serves as an extra force to learn the discriminative representation. The
synergic network enables dual DCNNs to mutually facilitate each other during
the training process.

3.4 Training and Testing

We applied data augmentation (DA), including the random rotation and hori-
zontal and vertical flips, to the training data, aiming to enlarge the dataset and
hence alleviate the overfitting of our model. We denoted two image batches as
X4 ={xa1, a2, am}, X5 = {xp1,p2,..., LM}, corresponding classifi-
cation labels as Y4, Yg, and the synergic label as Ys. After the forward com-
putation of both DCNNs, we have two sets of deep features F4 and Fpg. Then,
we concatenated the corresponding pair of deep feature maps, and obtained
Fuop = {faioB1, fa20B2, -, fAMoBM }, Which was used as the input of the
synergic network. Next, we computed the two classification losses Z(A)(H(A)),
1B)(0B)) and synergic loss 1(5)(0(9) which are all cross-entropy loss. The
parameters of each DCNN component and the synergic network are updated as

0N (t+1)=0W (1) —n(t)- AW
0P (t+1) = 0P (1) —n(t) - AP (5)
09 (t+1) =09 (t) —n(t)- A

(4) (g(A) (B) (g(B) $)(g($)
where A(4) = % +AAG) AB) = % TAAG)AG) = %’

A represents the trade-off between subversion of classification error and synergic
error, t is the index of iteration and 7(t) = % is a variable learning rate

scheme with an initialization n(0) = 0.0001. We empirically set the maximum
iteration number to 100,000, the hyper parameter A to 3.

At the testing stage, let the probabilistic prediction given by both DCNN
components be denoted by P = (pgi),pg), . ,pﬁ?), i=1, 2. The corresponding
class label given by the SDL model is

2 2 2
argmax{z pgz), . Zpgl), cee Zp&?} (6)
J i=1 i=1 i=1

4 Results

Comparison to the Ensemble Learning: Figure3 shows the receiver oper-
ating characteristic (ROC) curves and area under the ROC curve (AUC value)
obtained by applying the ensemble of two ResNet-50 (ResNet-502) and pro-
posed SDL model without DA to the test set, respectively. It reveals that our
SDL model (red curves) outperforms ResNet-50% (blue curves). More compre-
hensively, we give the average precision (AP), classification accuracy (Acc) and



Skin Lesion Classification Using Synergic Deep Learning 17

1
S 08

S 0.

=

2 0.6

'g ~— SDL (AUC=0.814)

< 0.4 —ResNet-50> (AUC=0.783)
KM

g

& 0.2

>

0 0.2 0.4 0.6 0.8 1
False Positive Rate

Fig. 3. ROC curves and AUC values of the proposed SDL model and ResNet-502.

Table 1. Performance of ResNet-50, ResNet-502 and SDL with or without DA.

Methods DA| AP Acc AUC
ResNet-50 |N | 0.6102 |0.8496 |0.7742
Y ]0.6224 |0.8522 |0.7829
ResNet-50% |N | 0.6115 | 0.8443 | 0.7826
Y 0.6308 |0.8549 | 0.7968
SDL N ]0.6536 |0.8522 |0.8139
Y /0.6644 0.8575|0.8179

AUC value of ResNet-50, ResNet-502? and the proposed SDL model on the test
set with or without DA in Table 1. It shows that SDL performs steadily better
than ResNet-50 and ResNet-502 regarding three evaluation metrics no matter
using or not using DA. It clearly demonstrates that the synergic learning strat-
egy makes a big contribution to higher performance of the SDL model, compared
with ResNet-502 without synergic learning.

Comparison to the State-of-the-Art Methods: Table2 shows the perfor-
mance of the proposed SDL model and the top five challenge records !, which
were ranked based on AP, a more suitable evaluation metric for unbalanced
binary classification [13]. Among these six solutions, our SDL model achieved
the highest AP, highest Acc and second highest AUC. The 1% place method
[4] leveraged a segmentation network to extract lesion objects based on the
segmented results, for helping the classification network focus on more repre-
sentative and specific regions. Without using segmentation, the SDL model still
achieved a higher performance in skin lesion classification by using synergic
learning strategy.

! https://challenge.kitware.com/#phase/5667455bcad3a56fac786791.
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Table 2. Performance of the proposed SDL model and the top five challenge records
in the leaderboard. Note that AP is the only evaluation metric, according to which all
participants were ranked.

Methods AP(*) | Acc | AUC

SDL 0.664 | 0.858 | 0.818
CUMED ([4] | 0.637 |0.855 |0.804
GTDL 0.619 |0.813 |0.802
BF-TB 0.598 |0.834 | 0.826

ThrunLab | 0.563 |0.786 |0.796
Jordan Yap | 0.559 |0.844 |0.775

5 Discussion

Stability Interval of Hyper Parameter A: The hyper parameter A is impor-
tant in the propose SDL model. Figure 4 shows the variation of the AP of SDL
over \. It reveals that, as A increases, the AP of SDL monotonically increases
when A is less than 3 and monotonically decreases otherwise in the validation
set. Therefore, we suggest setting the value of A to 3 for better performance.
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Fig. 4. Variation of the AP of our SDL model (without DA) on the validation set (a)
and test set (b) over A.

Synergic Learning and Ensemble Learning: The proposed SDL model can
be easily extended to the SDL™ model, in which there are n DCNN components
and C? synergic networks. Different from the ensemble learning, the synergic
learning enables n DCNNs to mutually learn from each other. Hence, the SDL"™
model benefits from not only the ensemble of multiple DCNNs, but also the
synergic learning strategy. We plotted the AP and relative time-cost (TC) of the
SDL™ model versus the number of DCNN components in Fig. 5. The relative TC
is defined as the ratio between the training time of SDL™ and the training time
of the single ResNet-50. It shows that, with the increase of DCNN components,
the TC grows significantly and monotonically, whereas the improvement of AP
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Fig. 5. Performance-time curve of the SDL™ model in the test set (left: without DA,
right: with DA) when n changes from 1 to 4 (n = 1 represents single ResNet-50).

is first sharply and then becomes slowly when using more than two DCNNs.
Therefore, taking the computational complexity into consideration, we suggest
using the SDL? and SDL? models.

6 Conclusion

In this paper, we propose a synergic deep learning (SDL) model to address the
challenge caused by the intra-class variation and inter-class similarity for skin
lesion classification. The SDL model simultaneously uses dual DCNNs with a
synergic network to enable dual DCNNs to mutually learn from each other.
Our results on the ISIC 2016 Skin Lesion Classification dataset show that the
proposed SDL model achieves the state-of-the-art performance in the skin lesion
classification task.
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