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Abstract. Identification of invasive cancer in Whole Slide Images
(WSIs) is crucial for tumor staging as well as treatment planning. How-
ever, the precise manual delineation of tumor regions is challenging,
tedious and time-consuming. Thus, automatic invasive cancer detection
in WSIs is of significant importance. Recently, Convolutional Neural
Network (CNN) based approaches advanced invasive cancer detection.
However, computation burdens of these approaches become barriers in
clinical applications. In this work, we propose to detect invasive cancer
employing a lightweight network in a fully convolution fashion without
model ensembles. In order to improve the small network’s detection accu-
racy, we utilized the “soft labels” of a large capacity network to super-
vise its training process. Additionally, we adopt a teacher guided loss
to help the small network better learn from the intermediate layers of
the high capacity network. With this suite of approaches, our network is
extremely efficient as well as accurate. The proposed method is validated
on two large scale WSI datasets. Our approach is performed in an aver-
age time of 0.6 and 3.6 min per WSI with a single GPU on our gastric
cancer dataset and CAMELYON16, respectively, about 5 times faster
than Google Inception V3. We achieved an average FROC of 81.1% and
85.6% respectively, which are on par with Google Inception V3. The pro-
posed method requires less high performance computing resources than
state-of-the-art methods, which makes the invasive cancer diagnosis more
applicable in the clinical usage.

1 Introduction

Invasive cancer is one of the leading worldwide health problems and the second
killer in the United States [13]. Early diagnosis of invasive cancers with timely
treatment can significantly reduce the mortality rate. Traditionally, the cancer
regions of Whole Slide Images (WSIs) are delineated by experienced patholo-
gists for histological analysis. However, precise delineation of the tumor regions
and identification of the nuclei for pathologists are time-consuming and error-
prone. Thus, Computer-aided diagnosis (CAD) methods are required to assist
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pathologists’ diagnostic tasks. However, WSI has a large image resolution up to
200, 000 × 100, 000 pixels and traditional methods are usually limited to only
small regions of the WSIs considering the computational burden.

Recently, with deep learning becoming the methodology of choice [1,5], many
work focus on applying these powerful techniques on directly analyzing WSIs. In
the context of WSI cancer detection, the common practice is to extract patches
of fixed size (e.g., 256×256) in a sliding window fashion and feed them to a neural
network for prediction. In [16], GoogleNet [14] is utilized as the detector. Kong
et al. [6] extended this approach considering neighborhood context information
decoded using a recurrent neural network. Using model ensembles (i.e., several
Inception V3 models [15]), Liu et al. [8] brings the detection result to 88.5% in
terms of average FROC on CAMELYON16 1 dataset. The above deep learning
based methods face the common problem: the computation is expensive which
becomes barriers to clinical deployment.

One of the most challenging problems for WSI image analytics is handling
large scale images (e.g., 2 GB). High performance computing resources such as
cloud computing and HPC machines mitigate the computational challenges.
However, they either have a data traffic problem or are not always available
due to high cost. Thus, high accuracy and efficiency become essential for deploy-
ing WSI invasive cancer diagnosis software into the clinical applications. In the
previous work, there is few focusing on both accuracy and computation efficiency
in computer-aided WSI cancer diagnosis. Resource efficiency in neural network
study such as network compression is an active research topic. Product quantiza-
tion [17], hashing, Huffman coding, and low bit networks [10] have been studied
but they sacrifice accuracy.

How to make the invasive cancer detection system as efficient as possible
while maintaining the accuracy? We answer this question with a suite of training
and inference techniques: (1) For efficiency we design a small capacity network
based on depthwise separable convolution [1]; (2) To improve accuracy, we refine
the small capacity network learning from a large capacity network on the same
training dataset. We enforced the logits layer of the small capacity network has
a close response as logits layer of the large capacity network. A similar approach
was investigated in work [2]. In addition to that, we use an additional teacher
guided loss to help the small network better learn from the intermediate layers
of the high capacity network; (3) To further speed up the computation in the
inference stage, we avoid the procedure of frequently extracting small patches in a
sliding window fashion but instead, we convert the model into a fully convolution
network (a network does not have multilayer perceptron layers). As a result, our
method is 5 times faster compared to one of the popular and state-of-the-art
benchmark solutions without sacrificing accuracy.

In summary, the major contributions of this work are as follows: (1) We
designed a multi-stage deep learning based approach to locate invasive cancer
regions with discriminative local cues; (2) Instead of relying on histological level
annotation such as nuclei centers and cell masks, the proposed method auto-

1 https://camelyon16.grand-challenge.org/.

https://camelyon16.grand-challenge.org/


158 B. Kong et al.

matically learn to identify these regions based on the regional annotation, which
are much easier to obtain. Thus, our approach is extremely scalable. (3) We
designed a novel method to shrink the large capacity network while maintaining
its accuracy. (4) Our method is extensively validated on two large scale WSI
dataset: gastric cancer dataset and CAMELYON16. The results demonstrate its
superior performance in both its efficiency and accuracy.

Fig. 1. Overview of the proposed framework. The above part indicates the training
phase and below part indicates inference phase. Note that we only illustrate proposed
transfer learning method in the training phase.

2 Methodology

2.1 Overview

Figure 1 shows an overview of our proposed method. The method is derived from
detection by performing patch classification (normal patches vs cancer patches)
via a sliding window. However, it is different from the traditional method of
detection by performing classification. The base network is a small capacity
network proposed for solving patch classification problem with a faster inference
speed than a large capacity network.

This small network is trained on the training patches. The small capacity
network has weak learning capability due to small number of learnable weights
and may cause under-fitting and lower inference accuracy than the large capacity
network in the inference stage. To solve this problem, we enforce the small capac-
ity network learning the “useful knowledge” from the high capacity network in
order to improve inference accuracy. Thus, we first train a high capacity net-
work on the same training set. Then, we distill small capacity network’s weights
in a fine-tuning stage discussed in Sect. 2.3. In the inference stage, we convert



Invasive Cancer Detection Utilizing Compressed CNN and Transfer Learning 159

multilayer perceptron layers (fully connected layers) of the network into fully
convolution layers (fcn layers). This change allows the network using arbitrary
sized tiles so that we can use large tiles resulting in faster speed. The output
probability map is post-processed and detection results are produced from it
using a method similar to [8].

The training objective function can be denoted as follows:

L =
1
|S|

∑

x∈S

(Lcls(x) + λLguide(x)) + γLreg (1)

where S is the training patches. Lcls denotes the classification loss, comprising of
the softmax loss using the hard ground truth label of the training patch and the
regression loss using the soft probability label from the large capacity network.
We will discuss it in detail in Sect. 2.3. Lguide is the teacher guided loss, which will
be elaborated in Sect. 2.3. Lreg denotes the regularization penalty term which
punishes large weights. Finally, λ and γ are balancing hyper-parameters to con-
trol the weights of difference losses, which are cross-validated in our experiments.

2.2 Small Capacity Network

To reduce the model’s capacity, we utilized depthwise separable convolution
in our small capacity network architecture. Depthwise separable convolution
(depthwise convolution + pointwise convolution) is proposed in [1] and replaces
convolution layers. Each kernel in a depthwise convolution layer performs convo-
lution operation on only a single channel of input feature maps. To incorporate
cross-channel information and change the number of output feature maps, point-
wise convolution (i.e., 1 × 1 convolution) is applied after depthwise convolution.
The depthwise separable convolution in [3] obtains a large factor of reduction in
terms of computation comparing to corresponding convolution operations.

2.3 Transfer Learning from Large Capacity Network

We utilized a large capacity network (deep and wide network with more weights)
to “teach” the small capacity network and adapt the model moving towards
large network’s manifold resulting logits of two networks being closer. We use
the knowledge of both the output (probability) and intermediate layers (feature)
in the large capacity network to teach the small capacity network.

Transfer Learning from the Probability: The network distilling technique
proposed in [2] serves this transfer learning task. The softmax layer transforms
the logit zi for each class into the corresponding probability pi:

pi =
exp(zi/T )∑

j∈{0,1} exp(zj/T )
(2)
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where i = 0 and i = 1 represent negative and positive labels, respectively. T is the
temperature which controls the softness of the probability distribution over the
label. A higher temperature T > 1 produces soft probabilities distribution over
classes, which helps the transfer learning. We used soft regression loss (Lsoft =
||pi − p̂i||2, where pi and p̂i are the probabilities produced by the small and large
capacity networks, respectively) to enforce small capacity network’s outputs to
match the large capacity network’s outputs. We pre-trained the large capacity
network using T = 2. In transfer learning, large capacity network’s weights are
fixed, and T = 2 is used in both small and large networks. In prediction, T = 1
is used.

We additionally use the hard ground truth label of the training patch to
supervise the training. Then, the total classification loss is as follows:

Lcls = Lhard + βLsoft (3)

where Lhard denotes the softmax (hard) loss. Hyper-paramter β controls the
weights of hard and soft losses, which is cross-validated in our experiments.

Feature Adaptation from the Intermediate Layers: Romero et al. [11]
demonstrated that the features learned in the intermediate layers of large capac-
ity networks can be efficiently used to guide the student network to learn effective
representations and improve the accuracy of the student network. Inspired by
this idea, we apply the L2 distance between feature of the teacher network Ftea

and the student network Fstu, which we name as teacher guided loss:

Lguide = ||Ftea − Fstu||2 (4)

While applying teacher guided loss, it is required that shape of the feature
map dimension from teacher network should be the same as the student network.
However, these two features are from different networks and the shape can be
different. Thus, we use an adaptation layer (we use a fully connected layer) to
map the feature from the student network to the same shape of the teacher
network.

2.4 Efficient Inference

In most of popular WSI detection solutions such as [8,16], fixed-size patch based
classification is performed in a sliding window fashion. The number of forward
computation is linear to the number of evaluated patches. The memory cannot
hold all patches so that frequent I/O operations have to be performed. This is
the major source of the computational bottleneck. Inspired by [9], we replace all
the fully connected layers in the small capacity network using equivalent convo-
lutional layers. After the transformation, the FCN can take a significantly larger
image if the memory allows. Let sizep be the input image size used in a clas-
sification network before FCN transformation. After FCN transformation, the
output of the network is a 2D probability map. The resolution of the probability
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map is scaled due to strided convolution and pooling operations. Let d be the
scale factor. We assume that n layers (either convolution or pooling) have stride
values >1 (i.e. stride = 2 in our implementation). Thus the scale factor d = 2n. A
pixel location xo in the probability map corresponds to the center xi of a patch
with size sizep in the input image. Centers displace d pixels from each other. xi

is computed as xi = d · xo + �(sizep − 1)/2�.

3 Experiment and Discussion

Datasets: Our experiments are conducted on gastric cancer dataset, acquired
from our collaborative hospital. The invasive cancer regions were carefully delin-
eated by the experts. It includes 204 training WSI (117 normal and 87 tumor)
and 68 testing WSIs (29 tumor and 39 normal) with average testing image size
107595×161490. We additionally validated our approach on the CAMELYON16
dataset. It includes 270 training WSIs (160 normal and 110 tumor images), and
129 testing WSIs (80 normal and 49 tumor images) with average testing image
size 64548 × 43633.

Experimental Setting and Implementations: We used Inception V3 as
the teacher network (large capacity network) in transfer learning. To train the
teacher network, we re-implemented the method in [8]. The patch size for the
teacher network is 299×299. The patch size for the student network is 224×224.
In the transfer learning, we randomly generated mini batches of patch size
299 × 299 for the teacher network and crop a 224 × 224 patch from it for the
student network. We augment the training samples using random rotation, flip-
ping and color jittering. We developed our approach using deep learning toolbox
Caffe [4]. The inference part is implemented in C++ and validated on a stan-
dard workstation with a Nvidia Tesla M40 (12 GB GPU memory). To hide the
I/O latency, we prefetch image patches into the memory in one thread and the
network inference is implemented in another two threads. Note that this data
prefetch scheme is applied to all investigated approaches. Besides this, we don’t
have other implementation optimization. In addition, all the experiments were
conducted on the highest magnification (40×). For the student network, we use
a normal convolutional layer followed by 13 depthwise separable convolutional
(3 × 3 depthwise convolutional layer followed by 1 × 1 convolutional layer), 1
average pooling (7× 7) and 1 fully connected layers. The number of convolution
filters for the first to the last convolutional layers (including depthwise separable
convolutional layers) are 32, 64, 128, 128, 256, 256, 512, 512, 512, 512, 512, 512,
960 and 960, respectively. We use average FROC (Ave. FROC, [0, 1]) [12] to
evaluate detection performance. It is an average sensitivity at 6 false positive
rates: 1/4, 1/2, 1, 2, 4, and 8 per WSI.
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Table 1. Comparison for different detection approaches in terms of computation time
and Ave. FROC. They are Inception V3, Inception V3 with FCN (IF), student network
(S), student network with FCN (SF), distilled student network with FCN (DSF), and
distilled student network with both FCN and teacher guided loss (DSFG, the final
proposed network).

Methods I IF S SF DSF DSFG

Gastric cancer Time (mins.) 3.8 2.3 1.5 0.6 0.6 0.6

Ave. FROC 0.806 0.813 0.768 0.773 0.801 0.811

CAMELYON16 Time (mins.) 17.0 9.1 7.8 3.6 3.6 3.6

Ave. FROC 0.857 0.859 0.809 0.815 0.847 0.856

Fig. 2. Experimental results of the methods on the (a) gastric cancer and
(b) CAMELYON16 datasets

Results and Analysis: We compared Inception V3 network (method I) using
explicitly sliding window fashion proposed in [8], Inception V3 with our fully
convolution (method IF) implementation, student network using explicitly slid-
ing window (method S), student network with fully convolution (method SF),
distilled student network with fully convolution (method DSF), and our final pro-
posed approach: distilled student network with both FCN and teacher guided loss
(DSFG). The stride of the sliding window is 128. The explicitly sliding window
based method is the most widely used method and it achieved the state-of-the-
art results [8,16]. Note that the original Inception V3 in [8] utilized 8 ensembled
models. However, for a fair comparison here, we only used one single model.
Due to GPU memory limitation, for the FCN based methods (IF, SF, DSF, and
DSFG), we partition the WSI into several blocks with overlaps and stitch the
probability maps to a single one accordingly after the inferences. In the method
IF, we used a block 1451 × 1451 with an overlap of 267 pixels. In methods SF,
DSF, DSFG, we used a block 1792 × 1792 with an overlap of 192 pixels.
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Table 1 and Fig. 2 illustrate comparisons of these methods in terms of com-
putation time and Ave. FROC. Fully convolution based detection significantly
speeds up the inference compared to the corresponding sliding window approach.
The method IF is 1.7 and 1.9 times faster than the method I for gastric can-
cer and CAMELYON16 datasets, respectively. The method SF is 2.5 and 2.2
times faster than the method S for gastric cancer and CAMELYON16 datasets,
respectively. Note that small capacity model (SF) is about 2.5 and 2.2 times
faster than the large capacity model (IF) for gastric cancer and CAMELYON16
datasets, respectively. In addition, we observed that the small capacity model
reduced Ave. FROC of about 4% and 5% for gastric cancer and CAMELYON16
datasets, respectively. However, once the small network gained knowledge from
transfer learning, the detection accuracy of it became close to the large model.
For CAMELYON16 dataset, we observed that single Inception V3 model cause
Ave. FROC decreasing to 85.7% from 88.5% reported in [8]. This drop is expected
because ensembled models reduced model variance and overfitting. However, this
result has been state-of-the-art accuracy among single model based methods.
Lin et al. developed an efficient inference algorithm and in their study [7], they
reported 15 min per WSI on CAMELYON16. While we achieved a much faster
computation time, the validation is performed in different hardware and software
environments.

These experiments demonstrate that we could keep the same detection accu-
racy compared to the method I and improve the efficiency significantly (5 times
faster than the method I) via model “compression” and transfer learning. Our
proposed model is more memory efficient and costs only 12 MB memory in con-
trast to the 84 MB required in the method I.

4 Conclusion

State-of-the-art deep CNN based invasive cancer detection methods have pushed
the accuracy boundary closer to clinical application, however, the computa-
tion and memory burdens are barriers in real clinical setups. We proposed a
new framework to keep high detection accuracy with efficient computation and
memory usage. Particularly, we improved detection accuracy of a utilized small
capacity network using a large capacity network pre-trained on the same data
set, who taught the small network having similar prediction power. In addition,
the proposed method requires less high performance computing resources and
runs much faster than state-of-the-art methods. Thus, we expect that our work
will become more applicable in the clinical usage.
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