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Abstract. Recent CNN architectures have established state-of-the-art
results in a large range of medical imaging applications. We propose an
extension to the U-Net architecture relying on multi-task learning: while
keeping a single encoding module, multiple decoding modules are used for
concurrent segmentation tasks. We propose improvements of the encod-
ing module based on the latest CNN developments: residual connections
at every scale, mixed pooling for spatial compression and large kernels
for convolutions at the lowest scale. We also use dense connections within
the different scales based on multi-size pooling regions. We use this new
architecture to jointly detect and segment red and bright retinal lesions
which are essential biomarkers of diabetic retinopathy. Each of the two
categories is handled by a specialized decoding module. Segmentation
outputs are refined with conditional random fields (CRF) as RNN and
the network is trained end-to-end with an effective Kappa-based function
loss. Preliminary results on a public dataset in the segmentation task on
red (resp. bright) lesions shows a sensitivity of 66,9% (resp. 75,3%) and
a specificity of 99,8% (resp. 99,9%).

1 Introduction

Diabetic retinopathy (DR) is a potential consequence of diabetes, affecting nearly
34% of the diabetic population. The disease progresses through stages charac-
terized mainly by the lesions observed in the retina. In 2D fundus, those lesions
can be regrouped in two categories according to their appearance: bright (such
as exudates and cotton wool spots) and red (such as hemorrhages and microa-
neurysms). Most of the literature on DR lesion segmentation proposes three
main stages: candidates detection, candidates classification and refinement of
the segmentation. This approach is used for example for red lesion detection in
[1] using handcrafted features. Deep learning has been used in [2] for hemorrhage
detection. For bright lesions, detection and segmentation usually rely on unsu-
pervised methods, as in [3]. Nonetheless, clinical assessment requires detection of
all types of lesions. This hypothesis stems from the empirical observation of the
labeling process done by medical experts on fundus images. Each salient region
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is classified according to its specific content but also to the context of the entire
image (like the presence of other lesions). An automatic decision system can
learn implicitly the DR grading by using a model as a black box. However, to
reproduce the protocol used by the grader the decision should rely on an explicit
full detection of lesions. Meanwhile, the capacity of CNNs to segment medical
images obtained from multiple modalities through multitasking has been demon-
strated in [4]. Even for a single modality, multitasking is well suited for jointly
segmenting different types of lesions. This approach provides several advantages,
especially shorter inference times and the ability to train a single architecture
to independently perform multiple highly specialized tasks that share a common
basis.

To our knowledge, there are no methods based on fully convolutional
approaches used for joint lesions segmentations. To address this gap, this paper
focuses on segmenting bright and red lesions with a single deep multitask archi-
tecture, without the need of blood vessels nor optic disc removal. We propose
a novel network based on recent developments of CNNs, like Residual Connec-
tions, Global Convolution and Mixed-pooling. We also introduce Dense Pooling
Connections, a new type of connection that is designed to reinforce the robust-
ness to noise by aggregating maximum activations within multiple regions. We
prove a performance improvement in comparison with existing architecture.

2 Methods

Overview. We train a novel CNN architecture with patches randomly extracted
from normalized images. The architecture extends the U-Net [5] with multi-task
learning. Improvement of the descending part (the encoder) of U-Net is proposed
as well as a new training strategy. The features from the encoder are shared
by two decoders respectively specialized respectively in bright and red lesions
segmentation.

Fig. 1. The network is fed patches from the normalized images. (a) The encoding
module uses a generic set of parameters shared by the two tasks. (b) The decoding
modules are task-specific. An auxiliary cost (c) is added at the end of the encoding
module; it is trained only to predict the presence of lesions.
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2.1 Multitask Architecture

Multitask learning was introduced in [6] as a way to improve generalization.
Part of the model is shared across independent tasks, while each task has its
specifics parameters. Figure 1 shows our global architecture and Fig. 2 describes
the encoding module in detail. The intuition behind multi-task learning in our
case is that information needed for bright and red lesions segmentation is com-
mon to both tasks (for example, anatomical features of the retina).

Fig. 2. Decoding module used with residual connections at every level, dense pooling
connections and global convolutional network.

Mixed Pooling: Each max-pooling is replaced by mixed-pooling layer [7]. For an
input tensor x composed of N channels and a vector a (trainable parameter),
the mixed-pooling layer computes:

fmix(xn) = an · fmax(xn) + (1 − an) · favg(xn) with n ∈ {1, ..., N} (1)

We use one scalar (an ∈ [0, 1]) per layer/channel, for an efficient combination
without drastically increasing the number of parameters of the model (N addi-
tional parameters per pooling layer).

Residual Connection: At each resolution level, the two 3 × 3 convolutions of the
original U-Net are extended to become residual blocks as introduced in [8]. The
motivation is to prevent the degradation problem observed in large models by
allowing the blocks to possibly become identity mappings.

Dense Pooling Connections: We introduce dense pooling connections through
multiple resolution levels. Each level is connected to those beneath it. Pooling
operations with various pooling sizes guarantee spatial resolution consistency.
We make the hypothesis that pooling operations over successively larger regions
reinforce scale and translation invariance while reducing sensitivity to noise as
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more and more context is added. At the lowest level, for a given field of view,
every previous levels transmit a combination of its maximal and average acti-
vation. The aggregation of those data should facilitate discrimination between
relevant features and local noise.

Global Convolutional Network: At the lowest scale of the network, we use con-
volutions with large kernels following the implementation recently proposed in
[9]. This further aggregates the contextual information.

Task Specific Decoders. The decoding modules used are the same as in the
original U-Net design. We use two decoding modules, each specialized for one
lesion category. Near the end of the training, we also added two fully connected
Conditional Random Fields (CRFs). CRFs were originally introduced by [10]. We
use the softmax output of each decoding module as the unary potential. The pair-
wise potential consists in a weighted sum of two Gaussian kernels that “control”
the appearance and the smoothness of the segmentation. The parameters of
the kernels are trained with the rest of the network, according to the proposed
method in [11] which implements the CRF as an additional RNN layer on top
of a traditional convolutional architecture.

2.2 Training

Each task is associated with its specific cost function. We also use an auxiliary
cost trained to detect whether a lesion is present or not in the patch. This helps
the encoding module to focus on distinguishing between an actual lesion and
other biomarkers. During training, the objective function Cglobal is the weighted
sum of each cost:

Cglobal = λbright · Cbright + λred · Cred + λaux · Caux (2)

Training is performed in three stages. In the first stage, the network is trained
with a log-likelihood based cost (L(θ | x) = − 1

D

∑D
i log P (Y = y(i)|x(i), θ)).

In the second stage, we change the objective function to a Kappa-based
one. Cohen’s Kappa (κ) coefficient measures the agreement between two raters.
As it takes into account the possibility of agreement occurring by chance, this
coefficient is well suited for distinguishing highly unbalanced classes as in our
case. The core idea of the κ coefficient is to quantify the difference between the
accuracy ρacc and the probability of pure chance agreement ρchance:

κ =
ρacc − ρchance
1 − ρchance

(3)

As the accuracy is not a differentiable measure, we use soft approximation to
model it. The output of the softmax, yproba, approximates the predicted label,
ypred, which is valid for high-confidence predictions as yproba tends to ypred
encoded in a one-hot vector. This is why we initially train the network with
the likelihood L, in order to obtain this high level of confidence.
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Table 1. Training stages

Stage Caux Cred Cbright λbright λred λaux CRF Epochs Encoder trained

I L L L 0.5 0.5 0.1 No 10 Yes

II L κ κ 0.5 0.5 0.1 No 90 Yes

III – κ κ 1.0 1.0 – Yes 20 No

The third training stage adds the CRFs after the two decoders. The auxiliary
cost is discarded and only the weights of the two decoding modules are updated.
Table 1 summarizes the parameters for the training stages.

As an optimizer, we use the Adadelta algorithm introduced in [12]. The
weights update policy is:

Δxt = −ν

√
E[Δx2]t−1 + ε
√

E[g2]t + ε
gt (4)

Where E[Δx2] and E[g2] are the running averages characterized by a parameter
γ. We use γ = 0.95 (a high value counter-balances the noise introduced by small
batch sizes). As Adadelta is designed to remove the need of an explicit learning
rate, in the original paper [12] ν is fixed and equal to 1. Nonetheless, as it was also
originally suggested, we found that dividing ν by 10 every 20 epochs drastically
helps the convergence, as shown in Fig. 3.

Fig. 3. Evolution of the κ metric on the validation set. The jump observed every 20000
iterations corresponds to the decrease of ν (One epoch ∼ 1000 iterations)

3 Experiments

We mainly used the publicly available DIARETDB1 database [13], which pro-
vides 89 fundus images from DR patients. As this database was designed for
lesion detection rather than segmentation, we refined the lesions boundaries
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manually, and an ophthalmologist validated them. 61 images were used for
test and validation (8 images from the recommended test set were randomly
selected for the validation set). The training set was composed of 28 images from
DIARETDB1, supplemented by 17 images with lesions from a private database
and 18 healthy images extracted from the e-ophtha database [14], giving a total
of 63 training images. A simple preprocessing step was applied to normalize
the illumination and we increased the dataset using data augmentation. We
applied geometrical (translation, rotation, shearing and elastic distortion) and
color (brightness, contrast, gamma, HSV saturation/value) transformations to
the input images. For each image, a random combination of those operations
was applied. The parameters of each transformation were also randomly sam-
pled at each epoch. We thereby ensured that the network never saw the exact
same patch twice. The network was fed patches of size 400 × 400. Between 8
and 10 patches were randomly extracted per image, with a prior distribution to
favor patches centered on a lesion. We used a weights decay rate of 0.0005 and
a batch size of 2.

4 Results and Discussion

We tested our model by comparing it with the original U-Net architecture (one
decoder, three classes), and with another model similar to the U-Net but with
two decoding modules. We refer to these latter networks as U-Net and U-Net2;
we trained them with the same strategy as our proposed network. Sensitivity and
specificity were measured pixel-wise and averaged over the test set. Tables 2 and 3
provide the segmentation performance results. The quality of the segmentation
was also evaluated in a patch-wise manner, as this corresponds to what the
network actually “sees”. Patches were of size 400 × 400. We averaged the κ and

Table 2. Pixel-wise sensitivity

Model Red (%) Bright (%)

Our model 66,91 75,35

Our model (no CRF) 68.58 71.98

U-Net2 67.97 71.12

U-Net – 58.47

Table 3. Pixel-wise specificity

Model Red (%) Bright (%)

Our model 99.82 99,86

Our model (no CRF) 99.83 99.92

U-Net2 99.91 98.99

U-Net – 99.87

Table 4. κ coefficient measured on a
patch-based level.

Model Red (%) Bright (%)

Our model 45.71 68,86

Our model (no CRF) 51.97 77.56

U-Net2 24.26 73.26

U-Net – 54,77

Table 5. Dice coefficient measured on
a patch-based level.

Model Red (%) Bright (%)

Our model 59.80 78.97

Our model (no CRF) 65.63 82.99

U-Net2 37.46 79.77

U-Net – 82.63
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the Dice coefficient s, measured per patch, to get averages per image κimage and
simage. To get global values, we then averaged each κimage and simage over the
entire test set (see Tables 4 and 5).

The results are encouraging with regard to the proposed network’s segmen-
tation performance in comparison with both U-Net and U-Net2. The U-Net gave
satisfactory results in bright lesions segmentation but was completely unable to
predict red lesions. This gives strong support in favor of multitasking, as special-
ized branches appear to be able to capture features that a single branch cannot
(at least for the same number of training epochs). Nonetheless, we also observe
that our results tend to globally worsen with the CRFs. Visual inspection shows
that the CRFs tend to add tiny false positive red lesions, near the vessels. In
addition, the CRFs are well suited for hard exudates but tend to miss the bound-
aries of soft ones. The inference time was approximately 1 s per image, running
on NVIDIA GTX 1070 Ti hardware. Obtaining a fast and complete segmenta-
tion of the image constitutes an important first step toward our ultimate goal
of constituting an extensive, fully labelled fundus image database. This process
will be greatly accelerated using our model. We also plan to assess the capacity
of grading DR using features obtained directly from the encoding module and
output segmentation results. Indeed, the inferior results of the basic U-Net as
compared to the multi-task networks suggests that in those, encoded features
are highly representative of the abnormalities observed in the images.

Fig. 4. Some results showing good performance overall but with over-segmentation of
red lesions (false positives). One source of errors (observable in the first image) comes
from laser coagulation marks, similar to small hemorrhages.

5 Conclusion

We have proposed a novel CNN architecture to jointly segment bright and red
lesions in fundus images. We have highlighted the value of a multitask learn-
ing approach, as opposed to single task classification. The present work opens
the door to many possibilities, from clinical assistance (computer-assisted lesion
identification) to DR grading methods that do not rely on a “black-box” app-
roach.
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