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Abstract. Accurate localization of structural abnormalities is a pre-
cursor for image-based prenatal assessment of adverse conditions. For
clinical screening and diagnosis of abnormally invasive placenta (AIP),
a life-threatening obstetric condition, qualitative and quantitative anal-
ysis of ultrasonic patterns correlated to placental lesions such as pla-
cental lacunae (PL) is challenging and time-consuming to perform even
for experienced sonographers. There is a need for automated placental
lesion localization that does not rely on expensive human annotations
such as detailed manual segmentation of anatomical structures. In this
paper, we investigate PL localization in 2D placental ultrasound images.
First, we demonstrate the effectiveness of generating confidence maps
from weak dot annotations in localizing PL as an alternative to expen-
sive manual segmentation. Then we propose a layer aggregation structure
based on iterative deep aggregation (IDA) for PL localization. Models
with this structure were evaluated with 10-fold cross-validations on an
AIP database (containing 3,440 images with 9,618 labelled PL from 23
AIP and 11 non-AIP participants). Experimental results demonstrate
that the model with the proposed structure yielded the highest mean
average precision (mAP = 35.7%), surpassing all other baseline models
(32.6%, 32.2%, 29.7%). We argue that features from shallower stages can
contribute to PL localization more effectively using the proposed struc-
ture. To our knowledge, this is the first successful application of machine
learning to placental lesion analysis and has the potential to be adapted
for other clinical scenarios in breast, liver, and prostate cancer imaging.

1 Introduction

Abnormally invasive placenta (AIP) refers to a life-threatening obstetric condi-
tion in which the placenta adheres to or invades into the uterine wall. Depend-
ing on the degree of adherence or invasion, any attempt to forcibly remove the
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embedded tissue may lead to catastrophic maternal hemorrhage during child-
birth [1]. Ultrasonography is widely used to identify women at high risk of AIP.
However, recent population studies have shown that the rate of successful prena-
tal diagnosis of AIP remains unsatisfactory: merely between half and two-thirds
[2,3]. In a recent review [1], Jauniaux et al. evaluated the pathophysiology of
different ultrasound signs associated with AIP to better understand their rele-
vance to prenatal screening and diagnosis, among which placental lacunae are
of particular interest. Placental lacunae (PL) are sonolucent spaces within the
placenta that appear to be randomly distributed with irregular shapes and have
unpredictable size and number in a placental ultrasound image (Fig. 1(a)). PL
occur in almost all pregnancy. However, as shown in Fig. 1, numerous, large, and
irregular PL are more likely to occur in AIP cases than in non-AIP cases [4].

The contributions of this paper are twofold. First, we introduce an auto-
matic method that generates confidence maps from expert dot annotations for
subsequent training, as an alternative to detailed yet expensive manual segmen-
tation of PL. This method harnesses over-segmentation techniques to gener-
ate Gaussian-like confidence maps centered at PL by taking into account local
information, such as size, shape, and texture of PL. Second, we compare three
layer aggregation structures: deep supervision (DS), feature pyramid network
(FPN) and iterative deep aggregation (IDA) and then propose an IDA-based
fully convolutional network (FCN) for PL localization in 2D grayscale placental
ultrasound images. We demonstrate its effectiveness in localizing PL by running
experiments on an AIP database.

Fig. 1. Placental lacunae (PL) in placental ultrasound images. Red dots refer to expert
dot annotations. (a) two AIP cases containing numerous PL of irregular shapes and
sizes, (b) a placenta (with normal pregnancy outcome) containing only a few PL.

2 Methods

2.1 From Dot Annotation to Confidence Map

Detailed human labelling, such as manual segmentation of anatomical structures,
is sometimes too expensive to carry out in large-scale medical image analysis
studies. In this work, we investigate a weak way of annotating images, which
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is referred to as dot annotation [5]. The annotation protocol requires that the
centroid of the observed PL is pinpointed by the annotator and the spatial coor-
dinates stored. As shown in Fig. 1, dot annotations pinpoint the most reasonable
locations of PL in expert opinion. Learning these coordinates directly would gen-
erally require computational complexity proportional to the number of PL in the
image. Instead, we present a bottom-up approach that dissociates runtime com-
plexity from the number of PL by generating a confidence map for each image,
encoding the belief that PL would occur at each pixel location. Intuitively, dot
annotations correspond to peaks in confidence maps.

Previous map generation approaches tend to fit a standard, isotropic Gaus-
sian function at each annotated dot [5,6]. Here we propose an alternative by
considering the size, shape, and texture of PL in order to improve localization
performance. For each labelled PL, a local patch is first cropped, centering at the
dot annotation location P , as shown in Fig. 2(a). Then the simple linear itera-
tive clustering (SLIC) algorithm is applied on the patch to cluster pixels that are
close to each other in a 3-D space spanned by pixel intensity and spatial coor-
dinates [7], as shown in Fig. 2(b). A simple cluster expansion is then performed
by recursively grouping adjacent clusters of similar average pixel intensity. The
resulting grouped clusters form a binary mask, as shown in Fig. 2(c). In the final
step (Fig. 2(d)), a 2D Gaussian function is fit that centered at P , whose covari-
ance matrix Σ is determined by the ellipse that has the same variance as the
binary mask, such that the eigenvalues of Σ are the lengths of the major and
minor axes of the ellipse, scaled by a factor l = 1

3 in order to control its spread.
We rescale the Gaussian function by a factor of 50 as suggested in [5], yielding
the peak to be larger than 45 for most PL. By repeating this process for all PL
within an ultrasound image, we generate a smoothed confidence map. Where
two or more Gaussian functions spatially overlap with each other, we take the
pixel-wise maximum of the overlapping regions.

Fig. 2. The analysis pipeline that generates a local confidence map around PL given
only a dot annotation. (a) a cropped PL image with the dot annotation in the center,
(b) the SLIC over-segmentation of the region, (c) a cluster expansion algorithm yielding
a binary mask around the dot annotation, (d) a local confidence map is generated by
fitting a Gaussian function at the labelled PL.
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2.2 Lacunae Localization: Layer Aggregation Approaches

Layer Aggregation: For convenience, we put layers that yield the same fea-
ture resolution into the same stage. FCN’s natural pyramidal feature hierarchy
enables aggregations of both spatial (i.e. where) and semantic (i.e. what) infor-
mation from shallower stages to deeper ones. To achieve more accurate spatial
inference of PL, whose size is essentially much smaller than the placenta itself,
we propose to build up non-linear pathways that explicitly aggregate multi-scale
semantics and resolutions. Specifically, we investigate two generic FCN architec-
tures that have been widely used in medical image analysis: (1) a downsampling
network (DN) and (2) a U-shape network (UN). As shown in Fig. 3, DN sequen-
tially down-samples stages, leading to semantically richer but spatially coarser
features [8]. UN follows an encoder-decoder architecture, with the encoder part
being a DN and the decoder part an up-sampling network that gradually restores
resolution via 2× 2 transposed convolution [9]. We consider three layer aggrega-
tion approaches: deep supervision (DS) [10], feature pyramid network (FPN) [11],
and iterative deep aggregation (IDA) [12]. As shown in Fig. 3(a), DS concatenates
intermediate side-outputs and makes the final prediction. Here a side-output is a
prediction made by the output of a stage. FPN intends to enhance semantically
stronger features (from deeper stages) with weaker ones (from shallower stages)
via skip connection and linear pixel-wise addition. In FPN, the shallowest stage
will be aggregated last. IDA, on the other hand, starts from the shallowest stage
and iteratively merges deeper ones. All feature channel mismatches in Fig. 3 are
resolved by 1×1 convolution and resolution mismatches by bilinear upsampling.

Fig. 3. Two generic FCN architectures: DN and UN with three layer aggregation struc-
tures: (a) deep supervision (DS), (b) deeply supervised feature pyramid network (DS-
FPN), and (c) deeply supervised iterative deep aggregation (DS-IDA). Intuitively, the
box size is proportional to the spatial resolution and the box linewidth to the feature
channel number.
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To achieve accurate PL localization, we propose two layer aggregation struc-
tures, namely deeply supervised feature pyramid network (DS-FPN, Fig. 3(b))
and deeply supervised iterative deep aggregation (DS-IDA, Fig. 3(c)). We intro-
duce a non-linear pixel-wise addition in both structures for input feature maps
{xi}. The output is σ(BN(

∑
i wixi)), where σ is a non-linearity (e.g. ReLU),

BN is a batch normalization layer, and wi are convolutional weights to be
learnt. Side-outputs are produced in both structures to cast additional supervi-
sion alongside the aggregation pathways. Intuitively, DS-FPN focuses more on
semantically stronger features from deeper stages while DS-IDA progressively
enhances spatially finer features from shallower stages. This comparison allows
us to investigate the importance of features from shallower versus deeper stages
in PL localization. The model output looks like a ‘heatmap’ that encodes PL
localization confidence. PL centroid predictions are obtained by performing non-
maximum suppression at a certain confidence level.

Loss Function: The objective function of DS-FPN and DS-IDA are the same,
which is given by L(W) = �(SOUT , Ŝ)+ 1

N

∑N
i=1 �(Si, Ŝ). Here Ŝ is the reference

confidence map, SOUT is the final output of the model, and {Si}Ni=1 are N side-
outputs. We cast supervision not only on the final output, but also on all the
side-outputs to improve localization performance. W represents all the learnable
parameters. �(·, ·) denotes the L-2 loss between the inputs.

Fig. 4. Example images illustrating the use of SOKS to score PL localization. In each
image, a dot denotes the dot annotation (reference) and a cross denotes the prediction.
The value next to a pair of dot and cross is the SOKS score between them.

3 Experiments

Dataset: 34 placental ultrasound scans from 34 participants (23 AIP and 11
non-AIP) were collected as part of a large obstetrics research project [13]. Writ-
ten consent was obtained with local research ethics approval. Static transab-
dominal 3D ultrasound volumes of the placental bed were obtained according
to the predefined protocol with participants in semi-recumbent position and a
full bladder using a 3D curved array abdominal transducer. Each 3D volume
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was sliced along the sagittal plane into 2D images and annotated by Huan Qi
under the guidance of Dr. Sally Collins. The database contains 3,440 2D images
with 9,618 labelled PL in total, from 60 to 140 slices per volume. A subject-level
10-fold cross-validation was performed for each model. In each fold, test data
consisting of 2D image slices from 3–4 volumes were held out while images from
the remaining volumes were used for training and validation.

Implementation Details: All models were trained end-to-end using the Adam
optimizer. Pre-trained models were loaded for DN as well as the encoder part
of UN. The decoder part of UN was initialized by sampling from a Gaussian
distribution N (0,

√
2/n), where n is the number of trainable parameters for

each layer. The inputs were normalized to have zero mean and unit variance
and resized to have the dimension of 384 × 384 × 3. Horizontal flip was used
for data augmentation. The hyper-parameters were: mini-batch size 8; weight
decay 0.0005; initial learning rate 0.0001. All models reached convergence after
20 epochs. All experiments were implemented in PyTorch. A 10-fold training
took around 30 h on a 12 GB NVIDIA graphic card.

Evaluation Metrics: Our task requires simultaneous detection and localiza-
tion. For each PL, we already have its dot annotation (xi, yi), i.e. coordinates of
its centroid. Each PL also has a scale si which we define as the square root of
its SLIC cluster area. Following the evaluation metrics of the COCO Keypoint
Challenge, we define a Simplified Object Keypoint Similarity (SOKS) score for
each prediction-reference pair indexed by j: SOKS(j) = exp(−d2j/2s2jk

2). dj is
the Euclidean distance between reference and prediction and k is a constant
that controls the overall falloff, which is empirically set to 0.4241. The intuition
behind SOKS is that larger tolerance is given to PL of larger sizes. In practice,
we found SOKS ≥ 0.3 generally yields a perceptually acceptable localization,
as shown in Fig. 4. For evaluation, we compare APx, which denotes the average
precision by thresholding SOKS at x. Specifically, any prediction with SOKS ≥ x
would be marked as true positive (TP) and otherwise false positive (FP). Any
undetected PL would be marked as false negative (FN). APx is the mean of pre-
cision over the recall interval at [0, 1]. To achieve a high score of APx, a model
needs to have high precision at all levels of recall (or sensitivity), which is prac-
tically difficult in PL localization. We report four metrics: AP0.3, AP0.5, AP0.75,
and mAP. mAP is the mean of {APx} for x ∈ [0.3 : 0.05 : 0.95], measuring the
overall localization performance at different SOKS levels. We use mAP as the
primary metrics. Please refer to [6] for more details.

Performance Evaluation: As shown in Table 1, we chose ResNet18 and
VGG16 as model backbones and ran tests for three layer aggregation struc-
tures: DS, DS-FCN, DS-IDA. We removed the first 7×7 convolutional layer and

1 Please refer to cocodataset.org for details.

https://cocodataset.org
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Table 1. The performance of different PL localizers on the test set via 10-fold cross
validation. All results (%) are in the format of median [first, third quartile]. APx at
three SOKS thresholds (x ∈ {0.3, 0.5, 0.75}) are reported. mAP is the primary metrics.
Models are named in the format of A-B, where A is its generic architecture (DN or
UN) and B its layer aggregation structure (DS or DS-FCN or DS-IDA)

Model Backbone mAP AP0.3 AP0.5 AP0.75

DN-DS ResNet18 22.8 [20.2, 26.5] 33.0 [30.3, 36.3] 29.6 [27.1, 33.8] 19.7 [16.9, 23.9]

DN-DS-FCN 28.7 [22.0, 30.0] 42.7 [34.5, 43.6] 37.5 [30.6, 39.3] 24.0 [16.9, 25.7]

DN-DS-IDA 29.7 [25.3, 34.8] 38.6 [33.8, 46.0] 36.3 [31.0, 43.9] 28.5 [24.1, 32.5]

UN-DS VGG16 32.6 [24.1, 37.5] 41.4 [35.2, 47.2] 39.6 [31.4, 44.1] 31.3 [22.0, 36.5]

UN-DS-FCN 32.2 [28.4, 37.4] 42.3 [39.7, 46.0] 40.2 [35.7, 44.1] 31.0 [24.8, 36.8]

UN-DS-IDA 35.7 [28.4, 40.7] 44.7 [40.9, 50.1] 42.3 [36.5, 48.5] 35.3 [26.4, 37.8]

the max-pooling layer from ResNet18 such that all models contain three down-
sampling operations. We also introduced skip connections in all UN models in
the same way as U-Net [9]. Performances of different PL localizers are given in
Table 1. The median, first, and third quartile of 10-fold results are presented.
The proposed UN-DS-IDA surpasses all other PL localizers in all AP metrics.
Two-tailed paired t-tests showed that mAP from UN-DS-IDA is significantly
higher than those from the rest PL localizers (with p-value < 0.001).

Generating Confidence Maps: In this paper, we proposed to use a SLIC-
based approach to generate confidence maps that take into account the size,
shape, and texture of PL, instead of fitting an isotropic Gaussian at each dot
annotation with a fixed falloff σ. We compared these two approaches in exper-
iments. For the latter, an isotropic Gaussian function was fit at each PL to
generate confidence maps. Let pi be the position of a dot annotation. The value
at location x in the map was defined as: C(x) = A exp(−‖x − pi‖22/σ2), where
A was set to 50 as before. With this method, the best localization was achieved
by a UN-DS-IDA model at σ = 5 with mAP = 29.9%, being outperformed
by the proposed SLIC-based approach. This is because the size and shape of
PL are variable. There is no σ that would achieve good localization for all PL.
Our proposed approach uses local information, which makes it well-suited to
PL localization. Moreover, our approach leads to better visualization that learns
the size and shape automatically, as shown in Fig. 5, which can be beneficial for
clinical use.

4 Discussion

We further investigated the effectiveness of DS-IDA by probing the localization
performance of side-outputs {Si}Ni=1. Let the side-outputs (from left to right) in
DN-DS and UN-DS be {Si}4i=1 and {S̃i}7i=1 respectively. In the 10-fold cross val-
idation experiment, the mAP score (median) of S1, S2, S̃1, and S̃2 are 0. Starting
from S3 and S̃3, mAP scores start to increase as expected. From this, we argue
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that features from shallower stages are not effectively aggregated via either con-
catenation (DS) or skip connection (FPN). For instance, features from the shal-
lowest stage in DS-FPN are aggregated last, with little room for adaption and
improvement. On the contrary, DS-IDA structure progressively aggregates fea-
tures from shallower stages. Our experimental results indicate that features from
shallower stages can indeed contribute to PL localization effectively with the
proposed DS-IDA structure. One reasonable explanation is that down-sampling
operation would lose certain PL-related spatial information. Aggregating shal-
lower features compensate such loss to some extent. In addition to use in placenta
assessment such as lesion detection, we believe the analysis approach could be
adapted for other clinical scenarios in breast, liver, and prostate cancer imaging.

Fig. 5. Example results showing two model outputs, trained using isotropic Gaussian
confidence map and the proposed SLIC-based confidence map respectively.
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