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Abstract. In connectomics, tractography involves tracing connections
across gray-white matter boundaries in gyral blades of complex cortical
convolutions. To date, most tractography algorithms exhibit gyral bias
with fiber streamlines preferentially terminating at gyral crowns rather
than sulcal banks or fundi. In this work, we will demonstrate that a multi-
tissue global estimation framework of the asymmetric fiber orientation
distribution function (AFODF) will mitigate the effects of gyral bias
and will allow fiber streamlines at gyral blades to make sharper turns
into the cortical gray matter. This is validated using in-vivo data from
the Human Connectome Project (HCP), showing that, in a typical gyral
blade with high curvature, the fiber streamlines estimated using AFODFs
bend more naturally into the cortex than FODFs. Furthermore, we show
that AFODF tractography results in better cortico-cortical connectivity.

1 Introduction

Diffusion magnetic resonance imaging (DMRI) [1] is a non-invasive technique
that allows reconstruction of white matter (WM) pathways by tracing the direc-
tional patterns of water diffusion. In connectomics, this involves tracing across
gray-white matter boundaries in gyral blades of complex cortical convolutions
[1]. To date, most tractography algorithms exhibit gyral bias with streamlines
preferentially terminating at gyral crowns rather than sulcal banks or fundi. This
bias can be observed even for high angular resolution diffusion imaging (HARDI)
data [2,3].

Local fiber orientations, commonly represented via fiber orientation distribu-
tion functions (FODFs), are usually assumed to be antipodal symmetric, even
though in reality fiber tracts do not necessarily transverse each voxel in a sym-
metric fashion [4-6], especially in WM with complex configurations such as cross-
ing, bending, bifurcation, kissing, and fanning [3]. In the cortex, a symmetric
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representation of orientations hinders the estimated streamlines from curving
significantly to enter the cortical gray matter (GM). In this work, we demon-
strate that asymmetric fiber orientation distribution functions (AFODFs) can
potentially mitigate gyral bias in cortical tractography.

To date, asymmetric FODF estimation techniques [4,5] have been mainly
formulated in a voxel-wise manner. They are also not designed specifically to
address the gyral bias problem. In this work, we introduce a global framework
for AFODF estimation, dealing with partial volume effects that are prominent in
tissue boundaries. We model the diffusion signal as the convolution of an AFODF
with a multi-tissue response function [6]. The multi-tissue model accounts for
signal contributions from white matter (WM), gray matter (GM), and cere-
brospinal fluid (CSF).

In order to capture the asymmetry of the underlying fiber geometry in a
local neighborhood, we extend the multi-tissue model to account for positive
orientations (POs) and negative orientations (NOs). The AFODF at each voxel
is estimated by enforcing orientation continuity across voxels. To understand
the continuity constraint, we consider the scenario where a fiber leaves a voxel
in a PO and enters a neighboring voxel in a NO. The constraint minimizes
the difference between the PO and the NO. The AODFs are estimated globally
across voxels, reducing sensitivity to noise. Unlike other global FODF estimation
schemes [7,8], our method is initialization independent and incorporates FODF
asymmetry. Using in-vivo data, we demonstrate that the proposed method mit-
igates the effects of gyral bias and allows streamlines at gyral blades to make
sharper turns into cortical GM.

2 Method

2.1 Asymmetric Fiber Orientation Distribution

The diffusion signal s,(g) for gradient direction g € S* and location p € R? can
be decomposed into M € N tissue types, each of which is characterized by an
axially symmetric response function (RF) R;(g,u) [6,9]. The signal contribution
of each tissue i in a voxel can be computed as the spherical convolution of its
RF R;(g,u) and the fiber orientation distribution function (FODF) F), ;(u):

M
)= [ 3 Rl wya (1)

i=1

where the FODF is generally modeled using even order spherical harmonics
(SHs). Due to the inherent antipodal symmetry of the FODF, i.e., F},;(u) =
F,i(—u), u € S?, sub-voxel fiber fanning and bending cannot be distinguished
using symmetric FODFs.

To circumvent the limitation of antipodal symmetry, we augment the multi-
tissue constrained spherical deconvolution (CSD) [6] framework by incorporating
information from neighbouring voxels N,,, allowing asymmetry in FODF estima-
tion, giving us the AFODF'. Based on fiber continuity, a fiber leaving the current
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voxel p with direction u should enter the next voxel ¢ € N, along its negative
direction —u [4]. Based on this observation, the discontinuity of F,(-) in direction
u can be measured by

B, 0) = | Fylu) = 22— 3 Wl u) Fyla) @)

u
P, qup

where W ((¥,,4,u)) is a directional probability distribution function (PDF) that
is related to the angular difference between w and 0y = pi=fr. Kpu =
qu/\/p W ({p.q,u)) is a normalization term. We choose W ({0} 4,u)) to be a
Gaussian PDF with reference direction 9, 4. We represent the positive and neg-
ative hemispheres of the WM AFODF using two independent even-order SH
bases. The odd-order SH basis typically captures only noise and is therefore not

included in the representation [10]. More specifically, the AFODF can be written

as
_[Ytwesy) o X (P)
Fy(u) = 0o Y (ue SE)} [XX§(§)] , o

where YT (u € §2) and Y~ (u € S?) are the real symmetric SH bases defined
on different hemispheres of S%. X{,;(p) and Xy (p) are the corresponding SH
coefficients.

2.2 Global Estimation Framework

We solve the AFODF's of a set of voxels P = {p1,pa,...,py} jointly. We group
the signal vectors of the N voxels as columns in matrix S and the SH coefficients
of the AODF's of these voxels as columns in matrix X. We assume that three
tissue types (WM, GM, and CSF) contribute to the signal. The WM FODF is
anisotropic and can be represented using an SH series up to order [. The GM
and CSF FODFs are isotropic and can be represented using zeroth order SH
terms. With a set of directions U = {u,us,...,ux}, AFODFs of the N voxels
are solved simultaneously via

X:argn%%nHRX—SH% st. AX=0 and > ¢(pu)<e  (4)

peP,ucl
where
X (p1) - Xy (pw)
X = };(VGV&A&)) : Qﬁﬁgﬁ and R = [Riyy, Ryvars Rant, Rosr) -
Xese(p1) --- Xcsr(pw)

()
Matrix R maps the AFODF coefficients to the DW signal by means of spherical
convolution. Matrix A maps the AFODF coefficients to the AFODF amplitudes
and the constraint AX > 0 imposes AFODF non-negativity [6]. Function ¢(-)
is as defined in (2), but is computed only for the WM portion of the AFODF.



48 Y. Wu et al.

Fig. 1. (a) FODFs and (b) AFODFs with close-up views shown for gyral blades.

2.3 Optimization

The constrained linear least-squares problem can be cast as a general strictly
convex quadratic programming (QP) problem:
" 1
X = arg m}én <trace {ZXTHX + QTX]>
(6)
s.t. AX > 0 and Z o(p,u) <,
peP,ucl

with H=RTR and Q = —RTS. X is obtained via convex optimization using
CVX! with MOSEK?2.

2.4 Materials and Implementation Details

A DMRI dataset (Subject ID: 105923) from the Human Connectome Project
(HCP) [11] was used to validate our method. The dataset has an isotropic spatial
resolution of 1.25 mm, with 3 b-values (b = 1000, 2000, 3000s/mm?), a total of
270 gradient directions (90 per shell), and 18 non-diffusion-weighted images.
Cortical and sub-cortical parcellation was performed on the T1-weighted MR

! http://cvxr.com/.
2 http://www.mosek.com.
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Table 1. Valid streamlines.

Deterministic Probabilistic

Seeds | Initial | Valid % Seeds | Initial | Valid %
AFODF | 1020987 | 709353 | 534032 | 75.28% | 1020987 | 709353 | 539338 | 76.03%
FODF | 1020987 | 565731 | 169893 | 30.03% | 1020987 | 565731 | 160897 | 28.44%

image using FreeSurfer. The cortical GM map generated by FSL using the T1-
weighted MR image was used to define tractography seed voxels in the cortex.

SHs up to order 8, amounting to 45 coefficients, are used to represent the
positive/negative hemispheres of the AFODF. The AFODF non-negativity and
fiber continuity constraints are enforced on 724 uniformly distributed orienta-
tions. The response function for each tissue type is estimated for each shell with
the help of the tissue segmentation map generated via FSL using the T'1-weighted
image.

Whole brain tractography was performed using deterministic and proba-
bilistic algorithms [12] using the peak directions of the AFODFs and FODFs.
Tracking was performed with the following parameters: 3 tracts per voxel in the
cortical GM, 0.5 voxel step size, 60° maximum turning angle for deterministic
tracking and 80° for probabilistic tracking. Tracking was terminated when the
fractional anisotropy (FA) value is below 0.1. Streamlines shorter than 10 mm
were removed.

3 Experimental Results

Figure 1 shows the differences between FODFs and AFODFs. We show the close-
up views of gyral blades where fiber pathways exhibit high curvature. It can be
observed that the AFODFs reflect the bending and branching characteristics of
cortical WM pathways. The asymmetry of the AFODFs becomes more apparent
for voxels nearer the cortex.

Figure 2 shows the outcomes of deterministic (columns 1 & 2) and probabilis-
tic (columns 3 & 4) tractography. We also show results after removing invalid
fiber streamlines that do not terminate in the cortex (columns 2 & 4). Even
though tractography was performed for FODFs and AFODFs using the same
number of seeds, AFODF's result in a significantly greater amount of stream-
lines, even after the removal of invalid streamlines. FODF's, on the other hand,
result in a larger fraction of invalid streamlines. Quantitative results in Table 1
confirm this observation, suggesting improvements in tractography across WM-
GM boundaries. It can also be observed that AFODF's give a larger amount of
streamlines entering the sulcal walls. This increases cortical coverage and reduces
gyral bias.

Figure 3 shows the connectivity between 164 regions identified by cortical par-
cellation [13]. The number of streamlines connecting two regions was recorded
and a connectivity matrix was then constructed based on normalized streamlines
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Fig. 2. Tractography using FODFs and AFODFs. The asterisks (‘+’) indicate removal
of invalid streamlines.
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Fig. 3. Connectivity between the 164 cortical regions of the Destrieux Atlas [13].

counts. Normalization was performed by pre- and post-multiplication of the con-
nectivity matrix (C) with degree matrix (D) raised to the power of —1/2 i.e.,
D~2CD~z. All connections with normalized counts greater than 0.1 are shown.

Self-connections are removed. The results again confirm that AFODFs yield bet-
ter cortico-cortical connectivity.

4 Conclusion

We have presented a multi-tissue global estimation framework for AFODFs and
have demonstrated that AFODFs can be used to mitigate gyral bias in corti-
cal tractography. Our method extends multi-shell multi-tissue CSD by imposing
fiber continuity across voxels to resolve orientation asymmetry. We have shown
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through an HCP dataset that our method resolves realistic sub-voxel fiber con-
figurations and improves deterministic and probabilistic tractography.
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