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Abstract. Determining the malignancy of glioma is highly important
for initial therapy planning. In current clinical practice, often a biopsy
is performed to verify tumour grade which involves risks and can neg-
atively impact overall survival. To avoid biopsy, non-invasive tumour
characterisation based on MRI is preferred and to improve accuracy and
efficiency, the use of computer-aided diagnosis (CAD) systems is inves-
tigated. Existing radiomics CAD techniques often rely on manual seg-
mentation and are trained and evaluated on data from one clinical cen-
tre. Therefore, there is a need for accurate and automatic CAD systems
that are robust to large variations in imaging protocols between different
institutions. In this study, we extract features from T1ce MRI with a pre-
trained CNN and compare their predictive power with hand-engineered
radiomics features for binary grade prediction. Performance was evalu-
ated on the BRATS 2017 database containing MRI and manual segmen-
tation data of 285 patients from multiple institutions. State-of-the-art
performance with an AUC of 96.4% was achieved with radiomics fea-
tures extracted from manually segmented tumour volumes. Pre-trained
CNN features had a strong predictive value as well and an AUC score of
93.5% could be obtained when propagating the tumour region of interest
(ROI). Additionally, using a pre-trained CNN as feature extractor, we
were able to design an accurate, automatic, fast and robust binary glioma
grading system achieving an AUC score of 91.1% without requiring ROI
annotations.

1 Introduction

The optimal treatment strategy of newly diagnosed glioma strongly relies on
tumour malignancy. Diffuse glioma, the most common form of primary brain
tumours, are divided into grades II to IV according to malignancy by the World
Health Organization (WHO) [1]. Glioblastoma multiform (GBM) is the most
aggressive type of primary brain tumour and has a very poor prognosis with a
5-year survival rate of only 4–5% [2]. Current standard of care for GBMs consists
of early resection combined with chemotherapy and radiotherapy. Lower-grade
gliomas (LGGs), on the other hand, have more favourable outcomes and possible
treatment strategies include: a wait-and-scan approach, a biopsy for histopatho-
logical verification or immediate resection [3]. A recent study by Wijnenga et
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al. [3] shows that biopsy as initial strategy negatively impacts overall survival
with a reported hazard ratio of 2.69 (95% CI 1.19–6.06; p = 0.02) compared to
wait-and-scan. The invasive procedure involves high risks, is subject to sampling
error and the results may be subjective, depending on the neuropathologist per-
forming the histopathological analysis [4]. Hence a biopsy to confirm diagnosis
and grade of the tumour should be avoided and accurate non-invasive grading
is preferred.

Conventional MR imaging with gadolinium-based contrast agents is an estab-
lished technique for non-invasive brain tumour characterisation [5,6]. Through
MRI, information is obtained regarding contrast enhancement, necrosis, oedema,
mass effect, which are considered important predictors of tumour malignancy.
Nevertheless, brain tumour grading using this diagnostic technique is not always
reliable with reported sensitivities ranging between 55% and 83% [5]. For exam-
ple, low-grade glioma demonstrating contrast enhancement can be misdiagnosed
as high-grade or conversely 40–45% of non-enhancing lesions are found to be
highly malignant gliomas after histopathological verification [6]. Moreover, the
ever-increasing amount of MR image data raises the burden of accurate data
analysis and dramatically increases the workload of radiologists.

Computer-aided diagnosis (CAD) may provide a way to handle this data
explosion and increase diagnostic accuracy [7]. CAD systems can automatically
process MR images, calculate quantitative features describing tumour charac-
teristics and combine them to estimate tumour type and grade through the use
of artificial intelligence. The time required for diagnosis can be reduced and
accuracy and treatment planning enhanced while avoiding the need for biopsy.
Towards computer-aided brain tumour diagnosis, the use of radiomics has been
investigated [7–9]. Radiomics involves the extraction and analysis of quantita-
tive image features and typically consists of three stages: tumour segmentation,
feature extraction and finally classification or analysis of the radiomics features.
Zacharaki et al. [8] investigated the classification of brain tumours into differ-
ent types and grades based on conventional and perfusion MRI. In the pro-
posed method, shape, intensity and Gabor texture features were extracted from
regions of interest manually traced by expert neuroradiologists. On a dataset of
102 glioma from 98 patients, an accuracy of 87% was achieved for discriminat-
ing high-grade from low-grade glioma with a support vector machine (SVM). A
system for grade identification (low- versus high-grade) of astrocytoma from T2-
weighted images was designed in the work by Subashini et al. [9]. Tumours were
isolated with fuzzy c-means segmentation from which shape, intensity and tex-
ture features were calculated. A learning vector quantisation classifier trained
on 164 images and evaluated on 36 images achieved an accuracy of 91%. An
overview of MRI based medical image analysis studies regarding brain tumour
segmentation and grade classification is provided by Mohan and Subashini [7].
In current radiomics studies, often input of domain experts is required, such
as manual segmentation data, making these methods not reproducible and not
fully automatic. Additionally, most CAD methods are trained and evaluated on
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data from one clinical centre. Hence these systems are potentially not robust or
applicable to data from other centres due to large variations in imaging protocols.

Our goal is to investigate the use of deep learning to develop an accurate,
reproducible and fully automatic CAD system. State-of-the-art deep learning
models, like convolutional neural networks (CNNs) achieve high performances
in object recognition tasks [10]. We investigate the application of these tech-
niques on medical imaging data and study their performance for brain tumour
diagnosis. Deep learning has extensively been used in medical image analysis
[11] and is increasingly employed in brain tumour segmentation challenges [12].
Binary brain tumour grading using a CNN trained from scratch on data from
BRATS 2014 was evaluated by Pan et al. [13]. Sensitivity and specificity scores
of 73% were achieved with only a limited and imbalanced dataset. Automated
diagnosis with deep learning remains a challenging task as large-scale datasets
of brain tumour scans comparable to ImageNet are unavailable. Therefore, in
this work, we will try to overcome this lack of large training sets through the use
of transfer learning. The application of pre-trained CNNs for survival prediction
based on MRI has been investigated by Ahmed et al. [14]. An accuracy of 82%
was achieved for differentiating long-term from short-term survival cases on a
limited dataset of 22 GBM patients.

To conclude, state-of-the-art performance in binary tumour grading is cur-
rently achieved through radiomics with reported accuracies of 87% up to 91%.
Only one study using deep learning for binary grade prediction was found reach-
ing sensitivity and specificity scores of 73%. In this paper, we investigate the
use of hand-engineered radiomics features and features extracted through a pre-
trained CNN to achieve state-of-the-art performance in discriminating GBMs
from lower-grade glioma. This allowed us to compare the predictive value of the
radiomics features with pre-trained CNN features on the same heterogeneous
dataset. In the radiomics approach, shape, intensity and texture features are
extracted from T1ce scans manually segmented into different tumour tissues.
Deep features, on the other hand, are extracted using a CNN trained on Ima-
geNet [10].

2 Materials and Methods

2.1 Data

The data used in this work originates from the BRATS 2017 database [12,15]. It
contains multi-institutional routine clinically-acquired pre-operative MRI scans
of 210 glioblastoma (GBMs) and 75 lower-grade glioma (WHO grade II and
III) with pathologically confirmed diagnosis. For each case a T1, T2, T1ce and
FLAIR sequence is available. The MRI scans originate from multiple institutions
and were acquired with different clinical protocols and scanners resulting in a
very heterogeneous dataset. All subject’s sequences are co-registered to the same
anatomical template, interpolated to a 1 mm3 voxel size and skull-stripped. Addi-
tionally, manual segmentation labels are provided denoting the GD-enhancing,
peritumoural oedema and the necrotic and non-enhancing tumour regions. In
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this study, only the T1ce sequence and segmentation data were used to perform
binary grade prediction.

2.2 Feature Extraction: Radiomics

In the radiomics feature extraction approach, all scans were first bias corrected
using SPM12 (version 6906, Wellcome Trust Centre for Neuroimaging, University
College London) running on MATLAB R2017b (The MathWorks, Inc., Natick,
MA). Next, since MRI scans are recorded in arbitrary units, the image intensities
were normalised following the robust white stripe normalisation [16]. The man-
ual segmentation labels were used to define five different tumour regions: total
abnormal region, tumour core, enhancing tissue, necrosis and oedema. In every
region we calculated 207 quantitative features: 14 histogram, 8 size and shape,
138 grey-level co-occurence, 22 grey-level run-length matrix, 12 neighbourhoord
grey-tone difference matrix and 13 grey-level size-zone matrix features, according
to the definitions in Aerts et al. [17] and Willaime et al. [18].

2.3 Feature Extraction: Pre-trained CNN

Instead of extracting hand-engineered features from the segmented tumour vol-
umes, deep features were extracted using a pre-trained convolutional neural net-
work. The VGG-11 architecture was used consisting of 8 convolutional and 3
fully connected layers [19]. The model, pre-trained on the ImageNet dataset,
was loaded from the pyTorch torchvision package. Features were obtained by
forward propagating an MRI slice through the network and extracting the 4096-
dimensional output of the first fully connected layer. The first layer was chosen
under the assumption that earlier layers learn more generally applicable fea-
tures than layers deeper into the network. Before being propagated through the
network, the slices were pre-processed to match the expected input of the pre-
trained pytorch models. The image intensities were scaled to a range between
[0,1], the slice was resized to a shape of 224× 224 through bilinear interpolation
and finally normalised with mean and standard deviation values provided by
pyTorch. Because the model expects RGB images, the MRI slice was provided
at the R channel and the B and G channels were set to zero.

Feature extraction and corresponding grading performance was evaluated for
four different ways of providing the T1ce scan at the input of the network (see
Fig. 1). In a first approach, the segmentation data was used to select the slice in
the T1ce scan containing the largest tumour contour and crop this slice to the
size of the tumour (Fig. 1: method 1). After applying the pre-processing steps
explained above, the tumour patch was propagated through the network, thereby
obtaining one 4096-dimensional feature vector with a corresponding label indi-
cating LGG or GBM.

For the second method, all tumour slices were propagated through the net-
work after being cropped to the size of the tumour (Fig. 1: method 2). Hence,
multiple feature vectors are obtained for each patient and every slice or feature
vector was classified into one of three classes: (1) LGG, (2) GBM where only
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oedema is visible, (3) GBM with contrast enhancement and necrosis. In each
slice, either a LGG or a GBM is visible. Additionally, a GBM may in some slices
only display oedema and no contrast enhancement and necrosis. Because these
slices may have a similar appearance as LGG slices, this could be confusing
for the classifier and therefore a separate class was added for GBM slices only
demonstrating oedema.

In the third method, the same slice was selected as in the first approach, but
now it was not cropped (Fig. 1: method 3). Hence the entire slice was propagated
through the network.

To design a system able to classify a T1ce scan without requiring segmen-
tation information, a fourth method was investigated. Here, every slice of the
T1ce scan was propagated through the network (Fig. 1: method 4). One entire
scan contains 155 slices, so 155 feature vectors were obtained for each patient
and a fourth class, besides the three classes of the second method, was added
for slices containing no tumour. Using this approach, no segmentation data is
required to classify slices from a T1ce sequence of a new patient resulting in a
fully automatic CAD system.

Fig. 1. Feature extraction with the pre-trained VGG-11 CNN. Method 1: Propagate
tumour region of the slice containing the largest tumour contour. Method 2: Propagate
tumour region of all tumour slices. Method 3: Propagate entire slice containing the
largest tumour contour. Method 4: Propagate all slices

2.4 Classification

After feature extraction, classification was performed with the goal to predict
whether a patient has a glioblastoma or lower-grade glioma. The feature vec-
tors were first scaled to unit norm and features showing no variance between
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different samples were removed. For classification, the python scikit-learn Ran-
domForestClassifier was used with 200 decision trees. All Random Forest (RF)
models were trained for the binary classification task except for the second and
fourth method of feature extraction with the pre-trained CNN. In those cases,
the RF model was trained to classify a slice into one of 3, respectively 4 classes
as explained in Sect. 2.3. For each patient, multiple slices were classified. All
predictions were combined by calculating their mean probability and the sum of
the probabilities of the two GBM classes was used as the final probability value
of having a GBM. The performance of the classifier was evaluated on a separate
test set containing 57 (20%) of the 285 glioma cases. The class ratio of 210:75
was equal in both training and test set. To enhance sensitivity and specificity of
the model, the probability threshold of classifying a glioma as GBM was opti-
mised through 5-fold cross-validation. The training and evaluation process was
repeated 50 times with different random splits in train and test set to estimate
average performance and variability of the model.

3 Results

For each of the feature extraction methods, a RF model was trained and evalu-
ated to asses the predictive value of the resulting feature vectors. The area under
the ROC curve (AUC), accuracy, sensitivity and specificity scores are reported
in Table 1. The RF model trained on the radiomics features achieves the high-
est performance with an average AUC score of 96%. With features extracted
using a pre-trained CNN, best results were obtained when zooming in on the
tumour region and using all tumour slices (CNN, method 2). When using fea-
tures extracted from the entire slice containing the largest tumour contour (CNN,
method 3), performance is lower with an AUC of 87% compared to 92%. How-
ever, when predicting glioma grade based on all slices of the T1ce scan (CNN,
method 4), performance could be improved to an AUC score of 91%. Classifying
a T1ce scan was possible within 0.3 s with CNN: method 1 and 3, 12 s with CNN:
method 2 and 30 s with CNN: method 4 on a Macbook Pro with 2.8 GHz Intel
Core i7 CPU where propagating all slices through the CNN required most of the
computation time.

Table 1. Mean (std) (%) area under the ROC curve, accuracy, sensitivity and speci-
ficity classification scores.

Feature extraction method AUC Acc. Sens. Spec.

Radiomics 96.4(2.6) 89.6(3.8) 89.9(5.4) 88.8(8.6)

CNN: Method 1 92.2(3.9) 83.8(4.6) 83.3(5.2) 85.2(9.6)

CNN: Method 2 93.5(3.0) 86.1(4.3) 85.4(5.4) 88.5(8.1)

CNN: Method 3 86.8(4.6) 79.1(4.9) 78.6(6.4) 80.7(9.6)

CNN: Method 4 91.1(3.6) 82(5.3) 81.5(7.2) 83(9.6)
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4 Discussion

The results shown in Table 1 show that the best performance is achieved with
the radiomics approach, matching or even outperforming state-of-the-art accu-
racies reported today. The achieved performance, however, was obtained when
extracting radiomics features from manually segmented tumour tissues which
is time-consuming and introduces subjectivity. A lot of research has been per-
formed towards automatic segmentation algorithms and the difference in per-
formance between using a state-of-the-art automatic segmentation algorithm or
manual segmentation remains to be investigated.

Although performance is slightly lower compared to the radiomics results,
accurate grading could be achieved with a pre-trained CNN as feature extractor
as well. With the first method of feature extraction through a CNN, an AUC is
achieved of 92% while only requiring a bounding box around the tumour which
is considerably less time-consuming than accurate segmentation of the different
tissues. Furthermore, when estimating grade based on all tumour slices, per-
formance could be improved to an AUC of 93.5%. These classification scores
are more than 10% higher than currently reported binary grading performance
with deep learning. Moreover, an automatic segmentation algorithm could be
used to define the bounding box and we expect that small variations or inaccu-
racies will not have a large influence on performance. Features extracted from
the entire slice were less informative but by calculating an ensemble prediction
from all slices, accurate grading could still be achieved reaching a performance
similar to the first method. This way, a binary grading system could be designed
that is fast, does not require segmentation or manual input to classify new T1ce
sequences and is trained on a very heterogeneous dataset making it robust to
variations in imaging protocols. These results show that a CNN, trained on an
entirely different image dataset containing natural images, is able to extract
informative features from MRI sequences as well. Their predictive value is lower
than radiomics features extracted from manually segmented tumour volumes,
but we expect that by fine-tuning the network on brain tumour MRI, results
can further be improved. Future work will focus on gathering more data, allow-
ing to specialise CNNs on brain MRI and open the path towards more accurate
and automatic brain tumour characterisation.

5 Conclusion

In this work, we compared the predictive value of radiomics features with features
extracted using a pre-trained CNN for binary brain tumour grading. Classifica-
tion results showed that the best performance is achieved with shape, intensity
and texture features extracted from manually segmented tumour volumes. Fea-
tures from a pre-trained CNN, on the other hand, had a high predictive value as
well and allowed to design an accurate, fast, automatic and robust binary grading
system. These results indicate that a pre-trained CNN, with possible fine-tuning
and more data, holds the potential to develop an accurate, reproducible an fully
automatic CAD system.
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