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Abstract. While the major white matter tracts are of great interest
to numerous studies in neuroscience and medicine, their manual dissec-
tion in larger cohorts from diffusion MRI tractograms is time-consuming,
requires expert knowledge and is hard to reproduce. Tract orientation
mapping (TOM) is a novel concept that facilitates bundle-specific trac-
tography based on a learned mapping from the original fiber orienta-
tion distribution function (fODF) peaks to a list of tract orientation
maps (also abbr. TOM). Each TOM represents one of the known tracts
with each voxel containing no more than one orientation vector. TOMs
can act as a prior or even as direct input for tractography. We use an
encoder-decoder fully-convolutional neural network architecture to learn
the required mapping. In comparison to previous concepts for the recon-
struction of specific bundles, the presented one avoids various cumber-
some processing steps like whole brain tractography, atlas registration
or clustering. We compare it to four state of the art bundle recogni-
tion methods on 20 different bundles in a total of 105 subjects from the
Human Connectome Project. Results are anatomically convincing even
for difficult tracts, while reaching low angular errors, unprecedented run-
times and top accuracy values (Dice). Our code and our data are openly
available.

Keywords: Diffusion MRI · Tractography · Deep learning

1 Introduction

Diffusion tractography would be much simpler to solve if there existed only one of
the major tracts in the brain. In reality, though, multiple tracts co-exist and over-
lap, resulting in multiple fiber orientation distribution function (fODF) peaks
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per voxel and larger bottleneck situations with tracts per voxel outnumbering the
peaks per voxel. In consequence, tractography is highly susceptible to false posi-
tives [4,5]. The only safe solution around false positives today is the explicit dis-
section of anatomically well-known tracts. While manual dissection protocols [10]
can be considered the current gold standard, a variety of approaches was already
developed for automating the process: Region-of-interest-based approaches fil-
ter streamlines based on their spatial relation to cortical or other anatomically
defined regions, which are typically transferred to subject space via atlas regis-
tration and segmentation techniques [12,14]. Clustering-based approaches group
and select streamlines by measuring intra- and inter-subject streamline similar-
ities, referring to existing reference bundles in atlas space [2,6,7].

Concept-wise, many previous approaches have opted for performing a rather
blind whole brain tractography and then investing the effort in streamline space,
clearing the tractograms from spurious streamlines and grouping the remain-
ing ones. We propose a novel concept, Tract Orientation Mapping (TOM), that
approaches the problem before doing tractography by learning tract-specific peak
images (tract orientation maps). These can be used as a prior – relating them to
Rheault et al. [8], who employed registered atlas information as a tract-specific
prior – or directly as orientation field for tractography. The larger-scale quanti-
tative evaluation of such approaches is challenging due to the effort required to
manually produce high quality reference tracts. To address this, an interactive
process in form of auxiliary tools was designed in support of the expert. This
helped us achieving high quality semi-automatic reference dissections of 20 bun-
dles in a total of 105 Human Connectome Project (HCP) subjects. On basis of
this novel data set, TOM was compared to several state of the art methods and
was able to set new standards in terms of quality, quantity and runtime.

Fig. 1. Exemplary depiction of a slice through two of the reference tracts, the original
fODF peak image and the corresponding reference TOMs (cf. Fig. 3 for abbr.).

2 Methods

Given a set of reference tracts, TOM is based on a learned mapping from the
original fODF peak image to a list of tract orientation maps (cf. Fig. 1). Please
note that TOM might refer to the general concept (tract orientation mapping)
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as well as to one of the tract orientation maps itself. Each TOM represents one
tract, and each voxel contains one orientation vector representing the local tract
orientation, i.e. the local mean streamline orientation of the corresponding ref-
erence tract. The mapping is learned via training a fully convolutional neural
network (FCNN) with the original fODF peak image as input to regress the dif-
ferent TOMs as output channels. The network is then used to predict estimated
TOMs for previously unseen subjects. These can be used as a tract-specific prior
or employed directly for tractography (Fig. 2).

Fig. 2. Pipeline overview: constrained spherical deconvolution (CSD) is applied to
obtain the three principal fODF directions per voxel. An encoder-decoder FCNN maps
the original fODF peak image to bundle-specific peak images, i.e. TOMs, which are
then employed as a prior for or as direct input for bundle-specific tractography.

Model. We implemented TOM using an encoder-decoder FCNN with long-
range skip connections. Our FCNN uses the same number of layers and filters as
the U-Net architecture [9], but with a input size of 144× 144 and leaky ReLU
activations. It has 9 input channels (the three principal fODF peaks) and 60
output channels (one 3D vector for each of the 20 bundles). The high dimen-
sionality and spatial resolution of our data let us opt for a memory-efficient 2D
instead of a 3D architecture. 2D slices were sampled along the y-axis. The deci-
sion of using fODF peaks as an input rather than raw image values or parametric
representations of the signal, such as spherical harmonics coefficients, was also
driven by the desire to reduce memory demand, with the side effect of becoming
more independent of the acquisition scheme. fODF peaks were extracted using
constrained spherical deconvolution (CSD) and peak extraction in MRtrix [3].

Training. Since we are solving a regression task, we employed linear activation
functions in the last layer. As loss function we used weighted cosine similarity
combined with mean squared error of the l2-norm
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with N being the number of classes, y the training target, ŷ the network output
and w a weighting factor which was used to handle the class imbalance between
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background and bundles and reinforce the training signal of the bundles. We set
w = 10 at epoch 0 and linearly reduced it to w = 3 at epoch 300. For y = 0, we
set w = 0. We used a learning rate of 0.001, an Adamax optimizer, 300 epochs
of training and a batch size of 44. The input images were normalized to zero
mean and standard deviation one. In the experiments, we applied 5-fold cross
validation with splits for training, validation and testing. Hyperparameters were
optimized on the validation set, network parameters producing optimal Dice
scores were used for testing. Dice scores were calculated by thresholding the
l2-norm of the peaks.

Bundle-Specific Tractography. There are different flavors of bundle-specific
tractography on basis of the estimated TOMs. The maps can be used for direct
TOM tractography. Here, we applied deterministic MITK Diffusion tractogra-
phy for this purpose, min. length 50 mm, one seed per voxel. Alternatively, a
TOM prior can be applied during tractography on the original data. Here, we
implemented this by amplifying the bundle-specific peaks using a weighted mean
between original and prior peaks, similar to [8]. Last but not least, completely
sticking to the original data, a TOM-based peak selection might be performed for
tractography on the best-matching original peaks. For all three flavors, stream-
lines are stopped whenever the TOM becomes zero, which is the case outside of
the respective bundle.

Reference Data. The approach was evaluated on a newly created database of
105 HCP subjects, each with a semi-automatic dissection of 20 prominent white
matter tracts [13]. HCP imaging parameters were: 1.25 mm isotropic resolution,
270 gradient directions, three b-values b = [1000; 2000; 3000] s/mm2. Starting
point per subject was a 10 million streamline tractogram generated using MRtrix
CSD and iFOD2 (min. length: 40 mm) [11]. TractQuerier [12] was then used
to extract a first approximation of each bundle. Several interactive auxiliary
tools were then employed and interactively combined in a workflow implemented
in MITK Diffusion to achieve high quality reference dissections of each tract:
(a) Manual definition of inclusion and exclusion ROIs, (b) QuickBundles [1]
clustering for detection of small or spurious streamline clusters, (c) detection of
streamlines that run through low fiber density voxels. Additionally, streamlines
that run back and forth inside the target bundle, i.e. making 180◦ turns within
less than 30 mm distance, were also removed. To make the high quality of this
dataset accessible, we openly published our reference tracts for all 105 subjects:
https://doi.org/10.5281/zenodo.1088277.

Reference Methods. We use four state of the art automatic tract delin-
eation methods as baseline, including clustering- and as ROI-based approaches:
RecoBundles [2] registers the tractogram to a reference subject and uses cluster-
ing to detect streamlines that are similar to the reference tracts. It was run with
default parameters on 5 different reference subjects, aggregated by taking the

https://doi.org/10.5281/zenodo.1088277
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mean. Using all 63 training subjects as reference subjects was computationally
infeasible due to the long runtime of RecoBundles for 10 million fibers.
WhiteMatterAnalysis (WMA) [6,7] clusters streamlines across several subjects
and produces a corresponding atlas. Each cluster in the atlas is assigned to a
specific anatomical bundle. Registering new subjects to the atlas enables auto-
mated bundle delineation. We use the pretrained WMA atlas containing 800
clusters. We manually optimized the nine predefined mappings of clusters to
anatomical tracts to better align it with our reference. During this process, we
were inherently limited by the finite set of distinct clusters offered by the atlas.
We chose not to extend the mapping to the 11 remaining reference tracts, which
would require considerable effort given the amount of clusters. Applying WMA
to 10 million streamlines requires >100 GB of memory, producing clusters with
substantial amounts of false positives. Thus, streamline counts were reduced to
500k, requiring approx. 30 GB of memory and creating cleaner clusters.
TractQuerier [12] extracts tracts based on the regions the streamlines have to
start in, end in and (not) run through defined in its own query language. We
used the same queries as used in our pipeline for extracting the reference data
(but without all the subsequent filtering).
Atlas Registration was additionally implemented as an in-house reference
method. All training subjects were iteratively registered to the same space
using FA-based symmetric diffeomorphic registration. The binary reference tract
masks were averaged in atlas space and used for removing fibers exiting the masks
in unseen registered test subjects.

3 Results

Quantitative. Figure 3 shows overall mean as well as tract-specific Dice scores
for each of the methods. These were calculated on basis of the binary tract
masks in comparison to the reference. For the overall means, differences between
TOM and all other methods were statistically significant according to Wilcoxon
signed-rank tests (p < 0.001). The mean angular error for the peaks predicted by
TOM in comparison to the reference TOM (i.e. the mean streamline orientation
in the reference) was 16.7◦ ± 0.5. This error is smaller than the mean angular
error between the reference TOM and the best-matching original fODF peak in
each voxel (18.8◦ ± 0.5).

Qualitative. Figure 4 shows qualitative results for the corticospinal tract, the
commissure anterior and the inferior occipito-frontal fascicle. We also show the
results of RecoBundles which had the best Dice score of all reference methods
in our quantitative evaluation. TOM tractography shows spatially very coherent
and complete bundles, without spurious streamlines. RecoBundles on a deter-
ministic tractogram, however, shows incomplete reconstructions, missing critical
parts like the lateral projections of the CST. RecoBundles on a probabilistic
tractogram finds the complete bundles (except for the left part of the CA), but
introduces false positive and spatially incoherent streamlines.
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Fig. 3. Results of 5-fold cross validation on 105 subjects for the analyzed methods. (AF:
arcuate fascicle, CA: commissure anterior, CST: corticospinal tract, CG: cingulum,
ICP: inferior cerebellar peduncle, MCP: middle cerebellar peduncle, SCP: superior
cerebellar peduncle, ILF: inferior longitudinal fascicle, IFO: inferior occipito-frontal
fascicle, OR: optic radiation, UF: uncinate fascicle) *: mean score over the nine tracts
provided by WMA analysis, see methods.

Fig. 4. Qualitative comparison on a random subject of the proposed method with
RecoBundles, applied to deterministic and probabilistic MITK Diffusion tractography,
min. length 50 mm, 1 million streamlines, fODF from MRtrix multi-shell multi-tissue
CSD.
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We also evaluated how the different flavors of TOM-based bundle-specific
tractography affect the reconstructions (Fig. 5). TOM-based peak selection failed
to reconstruct some difficult parts like the lateral projections of CST. Tractogra-
phy with a TOM prior resulted in a complete CST reconstruction. Similar but
more smooth results were obtained using direct TOM tractography. This finding
is well-aligned with our above-reported observation regarding the angular errors
of predicted and original peaks when compared to the reference peaks.

Fig. 5. Right CST of a random test subject reconstructed using the different variants
of TOM-based bundle-specific tractography.

Runtime. For the reconstruction of 20 bundles in one subject, TOM required
less than 2 min, making it more than five times faster than the second fastest
method Atlas Registration (approx. 11 min). TractQuerier, RecoBundles and
WMA required much longer processing times with around 17, 97 and 938 min,
respectively (see supplementary materials for more information).

4 Discussion and Conclusion

We presented a novel concept for learning-based bundle-specific tractography
that employs estimated bundle-specific peak images, i.e. TOMs. The results are
highly encouraging when considering quantitative, qualitative and runtime mea-
sures. One interesting finding was, in comparison to the reference, the lower angu-
lar error of the estimated TOM in comparison to the voxel-wise best-matching
fODF peaks. This was reflected in the experiments by improved performances
with increasing influence of the TOM. While the fODF represents a probability
distribution generating many streamlines during probabilistic tractography, the
TOM represents only those streamlines that were selected as a reference.

A limitation of our evaluation was the use of TractQuerier both during the
creation of the reference and during validation, inducing a potential positive bias
for the method. Furthermore, WMA evaluation was only available for nine out



Tract Orientation Mapping 43

of 20 tracts, which is not necessarily comparable. The margin between WMA
and the proposed method remains, though, when restricting TOM to these same
nine tracts. Regarding the reference data, although we applied extensive efforts
to mitigate the limitations of tractography, our tracts do not represent a real
ground truth. They are also subject to slight variations in the detailed anatomical
definition of tracts, e.g. when it comes to exact start and end regions. Despite
these limitations, to the best of our knowledge, the employed data set repre-
sents one of the best existing in-vivo approximations of known white matter
anatomy in a cohort of that size. The presented approach is based on supervised
learning, bearing the inherent limitation of depending on the availability and
quality of training data. This is similar to RecoBundles, WMA and Atlas Reg-
istration, which also require matching atlas information with defined reference
tracts. We have not yet studied the limits of TOM with respect to minimizing
the amount of training data. Moreover, we have not yet studied the feasibility of
applying HCP-trained TOM to non-HCP datasets, potentially with the help of
domain adaptation techniques. While first in-house experiments on schizophrenia
patients seem promising, this needs more evaluation and remains a potentially
rewarding line of research. The code of our method is available as an easy to use
python package: https://github.com/MIC-DKFZ/TractSeg
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