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Abstract. Decoding brain functional states underlying different cognitive
processes using multivariate pattern recognition techniques has attracted
increasing interests in brain imaging studies. Promising performance has been
achieved using brain functional connectivity or brain activation signatures for a
variety of brain decoding tasks. However, most of existing studies have built
decoding models upon features extracted from imaging data at individual time
points or temporal windows with a fixed interval, which might not be optimal
across different cognitive processes due to varying temporal durations and
dependency of different cognitive processes. In this study, we develop a deep
learning based framework for brain decoding by leveraging recent advances in
sequence modeling using long short-term memory (LSTM) recurrent neural
networks (RNNs). Particularly, functional profiles extracted from task functional
imaging data based on their corresponding subject-specific intrinsic functional
networks are used as features to build brain decoding models, and LSTM RNNs
are adopted to learn decoding mappings between functional profiles and brain
states. We evaluate the proposed method using task fMRI data from the HCP
dataset, and experimental results have demonstrated that the proposed method
could effectively distinguish brain states under different task events and obtain
higher accuracy than conventional decoding models.
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1 Introduction

Decoding the brain based on functional signatures derived from imaging data using
multivariate pattern recognition techniques has become increasingly popular in recent
years. With the massive spatiotemporal information provided by the functional brain
imaging data, such as functional magnetic resonance imaging (fMRI) data, several
strategies have been proposed for the brain decoding [1–7].

Most of the existing fMRI based brain decoding studies focus on identification of
functional signatures that are informative for distinguishing different brain states. Par-
ticularly, brain activations evoked by task stimuli identified using a general linear model
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(GLM) framework are commonly adopted [8]. The procedure of identifying brain
activation maps is equivalent to a supervised feature selection procedure, which may
improve the sensitivity of the brain decoding. In addition to feature selection using the
GLM framework, several studies select regions of interests (ROIs) related to the brain
decoding tasks based on a prior anatomical/functional knowledge [2]. A two-step
strategy [4] that swaps the functional signature identification from spatial domain to
temporal domain has recently been proposed to decode fMRI activity in the time
domain, aiming to overcome the curse of dimensionality problem caused by spatial
functional signatures used for the brain decoding. All these aforementioned methods
require knowledge of timing information of task events or types of tasks to carry out the
feature selection for the brain decoding, which limits their general application. Other
than task-specific functional signatures identified in a supervised manner, several whole-
brain functional signatures have been proposed. In particular, whole-brain functional
connectivity patterns based on resting-state brain networks identified using independent
component analysis (ICA) are adopted for the brain decoding [1]. However, time
windows with a properly defined width are required in order to reliably estimate the
functional connectivity patterns. Deep belief neural network (DBN) has been adopted to
learn a low-dimension representation of 3D fMRI volume for the brain decoding [3],
where 3D images are flatten into 1D vectors as features for learning the DBN, losing the
spatial structure information of the 3D images. More recently, 3D convolutional neural
networks (CNNs) are adopted to learn a latent representation for decoding functional
brain task states [5]. Although the CNNs could learn discriminative representations
effectively, it is nontrivial to interpret biological meanings of the learned features.

Most of the existing studies perform the brain decoding based on functional sig-
natures computed at individual time points or temporal windows with a fixed length
using conventional classification techniques, such as support vector machine
(SVM) [9] and logistic regression [2, 4]. These classifiers do not take into consideration
the temporal dependency, which is inherently available in the sequential fMRI data and
may boost the brain decoding performance. Though functional signatures extracted
from time windows [1, 4, 5] may help capture the temporal dependency implicitly, time
windows with a fixed width are not necessarily optimal over different brain states since
they may change at unpredictable intervals. On the other hand, recurrent neural net-
works (RNNs) with long short-term memory (LSTM) [10] have achieved remarkable
advances in sequence modeling [11], and these techniques might be powerful alter-
natives for the brain decoding tasks.

In this study, we develop a deep learning based framework for decoding the brain
states from task fMRI data, by leveraging recent advances in RNNs. Particularly, we
learn mappings between functional signatures and brain states by adopting LSTM
RNNs which could capture the temporal dependency adaptively by learning from data.
Instead of selecting ROIs or fMRI features using feature selection techniques or a prior
knowledge of problems under study, we extract functional profiles from task functional
imaging data based on subject-specific intrinsic functional networks and the functional
profiles are used as features for building LSTM RNNs based brain decoding models.
Our method has been evaluated for predicting brain states based on task fMRI data
obtained from the human connectome project (HCP) [12], and experimental results
have demonstrated that the proposed method could obtain better brain decoding per-
formance than the conventional methods.
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2 Methods

To decode the brain state from task fMRI data, a prediction model of LSTM RNNs [10]
is trained based on functional signatures extracted using a functional brain decompo-
sition technique [13, 14]. The overall framework is illustrated in Fig. 1(a).

2.1 Functional Signature Based on Intrinsic Functional Networks

With good correspondence to the task activations [15], intrinsic functional networks
(FNs) provided an intuitive and generally applicable means to extract functional sig-
natures for the brain state decoding. Using the FNs, 3D fMRI data could be represented
by a low-dimension feature vector, which could alleviate the curse of dimensionality,
be general to different brain decoding tasks, and provide better interpretability. Instead
of identifying ROIs at a group level [1], we applied a collaborative sparse brain
decomposition model [13, 14] to the resting-state fMRI data of all the subjects used for
the brain decoding to identify subject-specific FNs.

Given a group of n subjects, each having a resting-state fMRI scan Di 2 RT�S,
i ¼ 1; 2; . . .; n, consisting of S voxels and T time points, we first obtain K FNs Vi 2
RK�S

þ and its corresponding functional time courses Ui 2 RT�K for each subject using
the collaborative sparse brain decomposition model [13, 14], which could identify
subject-specific functional networks with inter-subject correspondence and better
characterize the intrinsic functional representation at an individual subject level. Based
on the subject-specific FNs, the functional signatures Fi 2 RT�K used for the brain
decoding are defined as weighted mean time courses of the task fMRI data within
individual FNs, and are calculated by

Fig. 1. Schematic illustration of the proposed brain decoding framework. (a) The overall
architecture of the proposed model, (b) LSTM RNNs used in this study.
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Fi ¼ Di
f � Vi

N

� �0
; ð1Þ

where Di
f is the task fMRI data of subject i for the brain decoding, Vi

N is the row-wise

normalized Vi with its row-wise sum equal to one. Example FNs used in our study are
illustrated in Fig. 2.

2.2 Brain Decoding Using LSTM RNNs

Given the functional signatures Fi of a group of n subjects, i ¼ 1; 2; . . .; n, a LSTM
RNNs [10] model is built to predict the brain state of each time point based on its
functional profile and temporal dependency on its preceding time points. The archi-
tecture of the LSTM RNNs used in this study is illustrated in Fig. 1(b), including two
hidden LSTM layers and one fully connected layer. Two hidden LSTM layers are used
to encode the functional information with temporal dependency for each time point,
and the fully connected layer is used to learn a mapping between the learned feature
representation and the brain states. The functional representation encoded in each
LSTM layer is calculated as
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where f lt , i
l
t, C

l
t , h

l
t, and xlt denote the output of forget gate, input gate, cell state, hidden

state, and the input feature vector of the l-th LSTM layer (l ¼ 1; 2) at the t-th time point
respectively, and r denotes the sigmoid function. The input features to the first LSTM
layer are the functional signatures derived from FNs, and the input to the second LSTM
layer is a hidden state vector obtained by the first LSTM layer. A fully connected layer
with S output nodes is adopted for predicting the brain state as

Fig. 2. Functional networks used to extract task functional signatures for the brain decoding.
(a) Example functional networks, (b) all functional networks encoded in different colors.
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st ¼ softmaxðWs � h2t þ bsÞ; ð3Þ

where S is the number of brain states to be decoded, and h2t is the hidden state output of
the second LSTM layer which encodes the input functional signature at the t-th time
point and the temporal dependency information encoded in the cell state from its
preceding time points.

In this study, each hidden LSTM layer contains 256 hidden nodes, and softmax
cross-entropy between real and predicted brain states is used as the objective function
to optimize the LSTM RNNs model.

3 Experimental Results

We evaluated the proposed method based on task and resting-state fMRI data of 490
subjects from the HCP [12]. In this study, we focused on the working memory task,
which consisted of 2-back and 0-back task blocks of tools, places, faces and body, and
a fixation period. Each working memory fMRI scan consisted of 405 time points of 3D
volumes, and its corresponding resting-state fMRI scan had 1200 time points. The
fMRI data acquisition and task paradigm were detailed in [12].

We applied the collaborative sparse brain decomposition model [13, 14] to the
resting-state fMRI data of 490 subjects for identifying 90 subject-specific FNs. The
number of FNs was estimated by MELODIC [16]. The subject-specific FNs were then
used to extract functional signatures of the working memory task fMRI data for each
subject, which was a matrix of 405 by 90. The proposed method was then applied to the
functional signatures to predict their corresponding brain states. Particularly, we split
the whole dataset into training, validation, and testing datasets. The training dataset
included data of 400 subjects for training the LSTM RNNs model, the validation
dataset included data of 50 subjects for determining the early-stop of the training
procedure, and data of the remaining 40 subjects were used as an external testing
dataset.

Due to the delay of blood oxygen level dependent (BOLD) response observed in
fMRI data, the occurrence of brain response is typically not synchronized with the
presentation of stimuli, so the brain state for each time point was adjusted according to
the task paradigm and the delay of BOLD signal before training the brain decoding
models. Based on an estimated BOLD response delay of 6 s [17], we shifted the task
paradigms forward by 8 time points and used them to update the ground truth brain
states for training and evaluating the proposed brain state decoding model.

To train a LSTM RNNs model, we have generated training samples by cropping the
functional signatures of each subject into clip matrices of 40 by 90, with an overlap of
20 time points between temporally consecutive training clips. We adopted the cropped
dataset for training our model for following reasons. Firstly, the task paradigms of most
subjects from the HCP dataset shared almost the identical temporal patterns. In other
words, the ground truth brain states of most subjects were the same, which may mislead
the model training to generate the same output regardless of the functional signatures
fed into the LSTM RNNs model if we used their full-length data for training the brain
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decoding model. In our study, the length of data clips was set to 40 so that each clip
contained 2 or 3 different brain states and such randomness could eliminate the
aforementioned bias. Secondly, the data clips with temporal overlap also served as data
augmentation of the training samples for improving the model training. When evalu-
ating our LSTM RNNs model, we applied the trained model to the full-length func-
tional signatures of the testing subjects to predict brain states of their entire task fMRI
scans. We implemented the proposed method using Tensorflow. Particularly, we
adopted the ADAM optimizer with a learning rate of 0.001, which was updated every
50,000 training steps with a decay rate of 0.1, and the total number of training steps
was set to 200,000. Batch size was set to 32 during the training procedure.

We compared the proposed model with a brain decoding model built using random
forests [18], which used the functional signatures at individual time points as features.
The random forests classifier was adopted due to its inherent feature selection mech-
anism and its capability of handling multi-class classification problems. For the random
forests based brain decoding model, the number of decision trees and the minimum leaf
size of the tree were selected from a set of parameters ({100, 200, 500, 1000} for the
number of trees, and {3, 5, 10} for the minimum leaf size) to optimize its brain
decoding performance based on the validation dataset.

3.1 Brain Decoding on Working Memory Task FMRI Data

The mean normalized confusion matrices of the brain decoding accuracy on the 40
testing subjects obtained by the random forests and the LSTM RNNs models are shown
in Fig. 3. The LSTM RNNs model outperformed the random forests model in 5 out of
9 brain states (Wilcoxon signed rank test, p\0:002). The overall accuracy obtained by
the LSTM RNNs model was 0:687� 0:371, while the overall accuracy obtained by the
random forests model was 0:628� 0:234, demonstrating that our method performed
significantly better than the random forests based prediction models (Wilcoxon signed
rank test, p\0:001). The improved performance indicates that the temporal depen-
dency encoded in the LSTM RNNs model could provide more discriminative infor-
mation for the brain decoding.

Fig. 3. Brain decoding performance of the random forests and LSTM RNNs models on the
testing dataset of working memory task fMRI. The colorbar indicates mean decoding accuracy on
the 40 testing subjects.
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3.2 Sensitivity Analysis of the Brain Decoding Model

To understand the LSTM RNNs based decoding model, we have carried out a sensi-
tivity analysis to determine how changes in the functional signatures affect the
decoding model based on the 40 testing subjects using a principal component analysis
(PCA) based sensitivity analysis method [19]. Particularly, with the trained LSTM
RNNs model fixed, functional signatures of 90 FNs were excluded (i.e., their values
were set to zero) one by one from the input and changes in the decoding accuracy were
recorded. Once all the changes in the brain decoding accuracy with respect to all FNs
were obtained for all testing subjects, we obtained a change matrix of 90� 40,
encapsulating changes of the brain decoding. We then applied PCA to the change
matrix to identify principle components (PCs) that encoded main directions of the
prediction changes with respect to changes in the functional signatures of FNs.

The sensitive analysis revealed FNs whose functional signatures were more sen-
sitive than others to the brain decoding on the working memory task fMRI data.
Particularly, among top 5 FNs with the largest magnitudes in the first PC as shown in
Fig. 4, four of them were corresponding to the working memory evoked activations as
demonstrated in [20], indicating that the LSTM RNNs model captured the functional
dynamics of the working memory related brain states.

4 Conclusions

In this study, we propose a deep learning based model for decoding the brain states
underlying different cognitive processes from task fMRI data. Subject-specific intrinsic
functional networks are used to extract task related functional signatures, and the
LSTM RNNs technique is adopted to adaptively capture the temporal dependency
within the functional data as well as the relationship between the learned functional
representations and the brain functional states. The experimental results on the working
memory task fMRI dataset have demonstrated that the proposed model could obtain

Fig. 4. Sensitivity analysis of the brain decoding model on the working memory task fMRI
dataset. The top 5 FNs with most sensitive functional signatures are illustrated.
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improved brain decoding performance compared with a decoding model without
considering the temporal dependency.
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