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Abstract. Diffusion tractography suffers from a difficult sensitivity-
specificity trade-off. We present an approach that leverages knowledge
about anatomically well-known tracts (anchor tracts) in a tractogram
to quantitatively assess the remaining tracts (candidate tracts) accord-
ing to their plausibility in conjunction with this context information.
We show that our approach has the potential for greatly reducing the
number of false positive tracts in fiber tractography while maintaining
high sensitivities using phantom experiments (AUC 0.91). To investigate
the applicability of the approach in vivo, we analyze 110 subjects of the
Human Connectome Project young adult study. We demonstrate how
the approach may be used for structured analysis of in vivo tractogra-
phy and show supporting evidence for tracts previously discussed in the
literature, while potentially sparking discussions about the role of others.

1 Introduction

The problem of false positives in fiber tractography is one of the grand challenges
in the research area of diffusion-weighted magnetic resonance imaging (dMRI).
Facing fundamental ambiguities especially in bottleneck situations, tractography
generates huge numbers of theoretically possible candidate tracts [1,2]. Only a
fraction of these candidates is likely to correspond to the true fiber configuration,
posing a difficult sensitivity-specificity trade-off. For example for the field of
connectomics, which traditionally focuses on the high sensitivity regime, a recent
study showed that specificity is crucial and twice as important as sensitivity when
performing certain network analyses [3].

Current methods address the issue of false-positive tracts either by focusing
exclusively on well-known fiber bundles using prior knowledge [4,5] or by using
tract filtering techniques based on the image signal [6,7]. Currently, the link
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between these two choices of purely data driven and prior knowledge based
approaches is missing.

We propose a novel concept that rigorously exploits prior knowledge about
the existence of anatomically known tracts (anchor tracts) to reduce the degrees
of freedom of a successive data-driven filtering of the remaining candidate tracts:
anchor-constrained plausibility (ACP). This approach is based on the hypothe-
sis that information about the presence or absence of each anchor influences the
plausibility of the candidates and thereby reduces the ambiguities in the problem.
We demonstrate the potential of this concept to better handle the tractography
sensitivity-specificity trade-off in a series of phantom experiments. Since quanti-
tative in vivo evaluations of false-positive reduction rates would require a ground
truth which does not exist, we concentrate on assessing the capabilities of ACP
in enabling a structured and objective analysis of tractograms. Therefore we
analyzed ACP scores in 110 subjects of the Human Connectome Project (HCP)
young adult study and discuss the results in light of existing neuroanatomical
knowledge, providing detailed data-driven insights into what we might be miss-
ing when focusing only on anatomically known tracts.

2 Methods

Essentially, our method scores the candidate tracts by assessing their contri-
bution to the signal, subject to constraints imposed by the anchor tracts. The
process consists of three steps:

Preprocessing: The input tractogram is filtered using tissue segmentations
to discard streamlines that terminate inside the white matter (WM) or that
enter the corticospinal fluid (CSF). Based on prior knowledge, anchor tracts are
identified and extracted from the filtered tractogram. A variety of open-source
tract selection methods such as TractQuerier [4], RecoBundles [5], AFQ [8] or
the recently presented TractSeg [9] (github.com/MIC-DKFZ/TractSeg) are avail-
able for this step. The remaining streamlines are then clustered into individual
bundles that represent the candidate tracts. This is achieved in a reproducible
way by using cortex parcellations, assigning the streamlines to bundles according
to their endpoint labels. Alternatively, e.g. in phantom images, clustering can
be employed. Here, we used QuickBundles for this purpose [10].

Residual Calculation: It is now assessed which parts of the image can be
explained by the anchor tracts, using a method similar to LiFE [7] but on a fixel
[11] instead of a raw signal basis. This is done by fitting a scalar weight for each
anchor streamline by minimizing the mean squared error (MSE) between the
fiber orientation distribution function (fODF) peak magnitudes calculated from
the input image and the corresponding streamline fixels: MSE(x) = Ax=b[?/y,,
where x is the streamline weight vector, A is the fixel magnitudes matrix with
one column per streamline and one row per fODF peak direction and voxel and b
is the peak magnitudes vector representing the fODF image. The residual vector
r of this sparse system contains the fractions of the fODF peak magnitudes that
cannot be explained by the anchor tracts: r = b— Ax, with all negative elements
set to zero to retain only the unexplained parts of b.
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Candidate Scoring: Now it is analyzed which parts of the residual vector
of the previous step can be explained by the candidate tracts. To this end the
error MSE(y) = lBy—rll’/n of a second linear system is minimized, where B
represents the candidate streamlines. As in LiFFE, we define the score of each
candidate tract as the root MSE it reduces: \/MSE(y;) — v/MSE(y), where y is
the weight vector of all candidate streamlines and y, is the modified weight vector
with entries corresponding to candidate tract ¢ set to zero. Albeit determined
by the weights of the individual candidate streamlines, this score is tract- and
not streamline-specific. The procedure follows the intuition that it is plausible
to assume a candidate’s existence if it can explain parts of the signal that are
not explained by any known tract. On the other hand, candidate tracts that are
exclusively composed of parts of the anchor tracts — which is a typical cause
for false-positives [1] — receive a lower score. The score is interpreted as the
candidate’s support by the data, given boundary conditions in form of anchor
tracts (prior knowledge). It therefore represents a plausibility score for assuming
a tract’s existence under consideration of the yet unexplained parts of the signal.

3 Experiments and Results

3.1 In Silico Experiments and Results

We performed three phantom experiments with different degrees of complex-
ity. Experiment 1 is intended as an illustration of the proposed method. The
purpose of the other two experiments is to assess the capabilities of ACP in con-
text of the sensitivity-specificity trade-off described in Sect. 1. For each phantom
dataset, one test-tractogram was obtained using probabilistic constrained spher-
ical deconvolution (CSD) tractography [12]. Since the ground truth is known in
these cases, the anchor tracts could be simply defined using the binary masks of
the respective ground truth tracts.

Experiment 1: Figurel illustrates the principle of the ACP analysis on
an example consisting of two crossing fibers simulated with Fiberfoxr [13]. The
Invalid Bundle Ratio (IVR) of the original tractogram was 3.8 (the invalid tracts
outnumbered the valid tracts by a factor of 3.8). The experiment was performed
once with each ground truth tract as anchor. For both configurations, this cor-
rectly resulted in the candidates corresponding to the second ground truth tract
receiving the highest scores.

Experiment 2: For this experiment we employed a simulated replication of
the FiberCup phantom consisting of seven individual tracts mimicking a coronal
slice through the brain [13]. The IVR of the original tractogram was 1.9. The
experiment was repeated five times with four out of seven randomly selected
anchor tracts in each repetition. The three candidate tracts corresponding to
the ground truth tracts were ranked highest in all repetitions (see Fig. 2a).

Experiment 3: The main phantom experiment is based on the brain-like
phantom simulated with Fiberfor used in the ISMRM Tractography Challenge
2015 [1,14]. The IVR of the original tractogram was 7.7. The experiment was
repeated fifty times with 50% of the ground truth bundles extracted from the
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Fig. 1. Experiment 1, illustrating the proposed method. (a) and (b) show the ground
truth: two crossing fiber tracts and their corresponding simulated ODF representation.
(c-g) show exemplary candidate tracts (blue) obtained from the probabilistic trac-
togram using streamline clustering with the selected anchor tract (white). (h) shows
the candidate tract (red) that was correctly ranked highest by the proposed method
together with the anchor tract (white).

input tractogram randomly selected as anchor tracts in each repetition. Due
to its large extent and dominance, the Corpus Callosum was always included
in the set of anchor tracts. For comparison, another fifty repetitions were per-
formed without any anchor tracts. Additional benchmarks were obtained using
a volume-based ranking of the candidate tracts, as well as a streamline-weight-
based ranking obtained with LiFE [7]. The resulting ROC curves are shown in
Fig. 2b. The proposed method (AUC = 0.91) performed significantly better than
the benchmarks without anchor tracts (AUC = 0.78, t-test: p = 1.772%) and with
volume-based scoring (AUC = 0.7, t-test: p = 1.572%). The LiFE streamline-
weight-based ranking performed similar to random guessing (AUC = 0.5).

3.2 In Vivo Experiments and Results

In vivo experiments were performed on 110 subjects of the HCP young adult
study. For each subject we performed probabilistic CSD tractography with and
without anatomical constraints (MRtrix) as well as deterministic peak tractog-
raphy with anatomical constraints (MITK Diffusion). We used multiple tractog-
raphy methods and joined the results for increased sensitivity and to mitigate
tractography biases. From these whole brain tractograms we extracted 63 anchor
tracts using overlap and streamline shape criteria, similar to RecoBundles [5],
on basis of the reference tracts of the same subjects published by Wasserthal
et al. [15]. Successively we generated the candidate tracts from the remaining
streamlines by grouping them based on their endpoint locations with respect to
the FreeSurfer Desikan-Killiany atlas cortex parcellations readily available for
all HCP subjects [16]. To remove spurious streamlines from these tracts, a simple
tract density based filtering was applied. Furthermore, streamlines that connect
the same start and end label (loops) as well as very sparse tracts containing less
than 50 streamlines were excluded from the subsequent analysis. This process
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Fig. 2. (a) Experiment 2: Exemplary results on the simulated FiberCup dataset. The
four highest ranked candidate tracts (colored) are labeled with their ACP score. The
anchor tracts are colored white. The three real tracts received the highest scores.
(b) Experiment 3: ROC curves on the ISMRM 2015 Tractography Challenge phan-
tom obtained with the proposed approach (green), the same approach without anchor
tracts (red), simple tract-volume-based ranking (gray) and LiFE streamline-weight-
based ranking (blue).

resulted in an average number of 416 candidate tracts per subject that were
included in the subsequent ACP analysis. In the results presented in the remain-
der of this section, we only included tracts that were detected in at least 90%
of all subjects, resulting in 151 reproducible candidate tracts. These candidates
are ranked per subject according to their ACP score.

42% of the reproducible candidate tracts consisted of cortical U-fibers, i.e.
tracts that connect neighboring gyri. Out of the top-ten ranking candidates,
nine are U-fibers. This confirms the intended behaviour of our approach: U-
fibers were not included in the set of anchor tract, but are known to exists. This
is well reflected by their high ranking.

The top-ten ranking non-U-fiber candidates (see Fig. 3a) include several well
known tracts such as the frontal aslant tract (FAT) (left and right hemisphere,
parcellation labels 1018-1028 and 20182028, see Fig. 3b), tracts connecting the
hippocampus and the thalamus (left and right hemisphere, 10-17 and 49-53),
which are arguably part of the Fornix but missing from the anchor tracts, as
well as connecting the hippocampus and the entorhinal cortex (left hemisphere,
17-1006), which might also include parts of the lower cingulum or the stria
terminalis. Furthermore ranked in the top-ten, albeit with a larger ranking vari-
ance across subjects compared to the aforementioned tracts, are vertical tracts
between the lingual gyrus in the occipital lobe and the superior parietal lob-
ule (left and right hemisphere, labels 1013-1029 and 2013-2029) as well as fibers
from the inferior parietal to the inferior temporal (right hemisphere, labels 2008
2009) and fusiform gyrus (right hemisphere, labels 2007-2008). The correspond-
ing contralateral tracts that did not reach the top-ten are still ranked relatively
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high (top-twenty). The overall highest ranked tract across all subjects consists
of fibers connecting the left and right cerebellar cortex (parcellation labels 8 and
47), jumping from one cerebellar hemisphere to the other. In this case, ACP
ranking was helpful in identifying a systematic tractography artifact that arises
from the strong left-right anisotropy in this region and the limited image reso-
lution. The gap between the two hemispheres, which are tightly pressed against
each other, is not adequately resolved and makes the region appear as continuous
tissue (see Fig. 3c).
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Fig. 3. (a) Top-ten ranked non-U-fiber candidate tracts. The tracts are named accord-
ing to their parcellation labels described in the text. (b) Coronal view of left and right
frontal aslant tract (FAT) of a random subject. (c) Axial view on the cerebellum T1
with overlaid tensor glyphs. The arrows indicate areas with relatively high left-right
anisotropy (FA> 0.15). The area in the white box caused systematic false positives in
the tractograms (see text).
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4 Discussion and Conclusion

We proposed a novel concept, anchor-constrained plausibility analysis (ACP),
that derives quantitative candidate plausibility scores by jointly assessing tract-
based signal contribution levels and prior knowledge in the form of anchor tracts.
We evaluate the concept in multiple phantom experiments, showing that this
approach has the potential to greatly improve the sensitivity-specificity trade-
off in tractography, which is a central issue of current tractography pipelines
[1,3]. Our n vivo experiments in a cohort of 110 subjects of the HCP project
showed that the presented approach yields valuable information for a structured
and objective analysis of tractography results.

Even though there is no ground truth for the in vivo evaluation, the exper-
iments yielded several interesting insights. First, it was reassuring that well-
known tracts which were not included as anchor tracts, i.e. the cortical U-fibers
or FAT, received high plausibility scores. Second, ACP scoring turned out to be
helpful in assessing the quality of the existing anchor tracts and the tractogram
in general: parts of the Fornix and smaller connections between the hippocampus
and the entorhinal cortex were missing in the reference and consistently popped
up as tracts with high ACP scores [17]. Another tract that was systematically
scored high turned out to be a systematic artifact of tractography, which we
were previously not aware of. Third, ACP scores could play a role in ongoing
discussions on brain anatomy. The high ranked vertical association tracts, for
example, connecting the lingual gyrus in the occipital lobe and the superior pari-
etal lobule, seem to be associated to the structure identified as vertical occipital
fasciculus (VOF) by Yeatman et al. [18]. Other high ranked tracts could not
directly be associated with known anatomy, such as connections between infe-
rior parietal and inferior temporal gyrus, which visually reminds of a U-fiber
bundle, or between the inferior parietal and fusiform gyrus. Both examples seem
to be unrelated to prominent functional connections, but they are consistently
important to explain the image data.

In all these considerations, though, it is important to keep in mind that
a low score does not necessarily indicate that the respective tract is a false
positive but only that its existence is not essential for explaining the measured
data. Vice versa, a tract with high score is required to explain the data and
it is therefore often plausible to assume its existence. Nevertheless, in some
cases, as demonstrated for the cerebellum, additional factors such as the limited
image resolution, missing streamlines in the tractogram and prior anatomical
knowledge have to be taken into account to assess a tract’s overall plausibility.

All methods described in this work are available online in the open-source
Medical Imaging Interaction Toolkit (mitk.org/wiki/DiffusionImaging),
MRtrix (mrtrix.org) or Dipy (nipy.org/dipy). Future work will investigate
the proposed approach in conjunction with connectomics analyses where recent
studies have highlighted the disruptive impact of insufficiently specific tractog-
raphy on global network measures [3], as well as the influence of the proposed
filtering on the relationship between the structural and functional connectome.
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