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Abstract. Since the introduction of BOLD (Blood Oxygen Level
Dependent) imaging, the hemodynamic response model has remained the
standard analysis approach to relate activated brain areas to extrinsic
task conditions. Ongoing brain activity unrelated to the task is neglected
and considered noise. By contrast, model-free blind source separation
techniques such as Independent Component Analysis (ICA) have been
used in intrinsic task-free experiments to reveal functional systems usu-
ally referred to as “resting-state” networks. However, matrix factoriza-
tion techniques applied to BOLD imaging do not model the translation of
neuronal activity into BOLD fluctuations and depend on arbitrarily cho-
sen regularization measures such as statistical independence or sparsity.
We present a novel neurobiologically-driven matrix factorization app-
roach. Our matrix factorization model incorporates the hemodynamic
response function that enables the estimation of underlying neural activ-
ity in individual brain networks that present during task- and task-free
BOLD-fMRI experiments. We validate our model on the recently pub-
lished Midnight Scanning Club dataset including five hours of task-free
and six hours of various task experiments per subject. The resulting tem-
poral and spatial activation patterns obtained from our matrix factor-
ization technique resemble individual task profiles and known functional
brain networks, which are either correlated with the task or sponta-
neously activating unrelated to the task.

1 Introduction

The most common experimental approach in BOLD-fMRI is to design task
experiments that stimulate individual brain areas causing increased local neu-
ronal activity and changes in local blood flow. A binary function of neural activ-
ity comprises onset and duration of the task, and is convolved with a hemody-
namic response function (HRF), which relates neural activity to hemodynamic
changes. On the basis of this established link between neuronal activity and
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BOLD signal, several task experiments have been developed to map out under-
lying functional systems in humans. By contrast, ongoing spontaneous neural
activity from task-free fMRI experiments have been found to organize into so
called resting-state networks of intrinsic functional connectivity. In contrast to
task-fMRI, model-free approaches like Independent Component Analysis (ICA)
or seed-based analysis have been used to study this intrinsic functional connec-
tivity, but these do not model the relation between underlying neuronal activity
and spontaneous BOLD signal fluctuations. Recent studies [1] that investigated
the link between resting-state and task-fMRI have provided evidence that there
is a common functional brain architecture that exhibits increased or decreased
neural activity dependent on the intrinsic or extrinsic task demands. We pro-
pose a novel generative model embedded within a neural network optimization
framework to obtain characteristic brain networks and their corresponding neu-
ral activation profiles during a given task. The framework only requires minimal
pre-processing and is regularized by the known HRF.

2 Materials and Methods

We propose a Convolutional Hemodynamic Autoencoder (CHA) that results in
components which we loosely associate with functional networks. Each functional
network consists of three parts: a spatial map; a neuronal activity time course;
and a corresponding BOLD time course. We test our proposed technique on both
simulated and real imaging data with minimal preprocessing.

2.1 Functional Imaging Data

We use simulated data from1 and compare our results to the method of Total
Activation (TA) [2]. We further evaluate our method on the Midnight Scanning
club (MSC) data2 that comprises 10 healthy adult subjects with six hours of
task-free and five hours of task-based BOLD-fMRI experiments including motor
tasks, incidental memory and a mixed design task. More details can be found in
the respective references [2,3].

2.2 Minimal Preprocessing

For the fMRI sequences of each subject, volumes were realigned to the first
volume to correct for head motion. The first volume was linearly registered to
its corresponding bias-corrected T1-weighted anatomical scan. The intra-subject
affine registration and non-linear registration to the Talairach template were
combined to map all fMRI volumes with one re-sampling into the Talairach
space sampled in a 4 mm isotropic resolution. Time courses of voxels within
brain tissue were extracted. Time courses were high-pass filtered (0.01 Hz cut-
off) to remove signal drifts from scanner instabilities. Time courses are centered
1 https://miplab.epfl.ch/software/TA/TA.zip.
2 https://openfmri.org/dataset/ds000224/.
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and variance-normalized. The functional 4D volume set per subject is reshaped
into a matrix X ∈ R

t×v with t time points and v voxels.

2.3 Generative Model

Our CHA assumes that BOLD-fMRI data can be modeled as a compressed
representation of c components. Each component i consists of a spatial map
hi ∈ R

1×v
+ of v voxels, a neural activity time course Ni ∈ R

t×1
+ of t time points.

The corresponding BOLD time-course Wi = Ni�H is obtained by convolving Ni

with an impulse response function H (the standard HRF shape model obtained
from two Gamma functions). This generative model in matrix notation is given
by:

X = Wh + b2 (1)

with observed BOLD time course matrix X ∈ R
t×v decomposed into BOLD

time course matrix W ∈ R
t×c and spatial component matrix h ∈ R

c×v
+ . Each

BOLD time course in W has a corresponding time course in the neural activity
time course matrix N . Bias b2 ∈ R creates a negative baseline to compensate for
negative time course values after preprocessing described in Sect. 2.2.

2.4 Convolutional Hemodynamic Autoencoder

The generative model is embedded into a neural network autoencoder framework.
The encoder maps X into the hidden layer h = f(WTX + b1) using a rectified
linear unit (ReLU) activation function f : R → R+, activation bias b1 ∈ R

1×t

and the transpose of BOLD time course matrix W introduced in Sect. 2.3. The
parameters of the autoencoder are neural activity time courses N and biases b1
and b2 resulting in the following cost function:

arg min
N,b1,b2

‖X − X̂‖22 (2)

minimizing the l2 norm between the original data X and its reconstruction
X̂. Neural activity time courses N are initialized with the absolute values of a
random Xavier initialization [4]. Biases b1 and b2 are initialized with zeros. The
back-propagation algorithm (chain rule) is applied to derive the corresponding
gradient for the cost function. The gradient is optimized with the limited memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization scheme.

2.5 Hyper-parameter Tuning

The only hyper-parameter to tune is the number of components c. We use the
following heuristic to find a good solution through model averaging. We run n = 5
random initializations with c = 1000 for each of the 10 subjects (#subj) per
task3. We apply a non-negative matrix factorization (NMF) with non-negative

3 Limited by the available 24 GB GPU memory.



218 M. Hütel et al.

double singular value initialization (NNDSVD) [5] to cluster all combined spatial
maps H ∈ R

(c×n×#subj)×v
+ . The NNDSVD speeds up convergence and guarantees

deterministic behavior for determining the right number of components copt in
the following NMF cross-validation with Gabriel holdout as described in [6].
The complete processing pipeline is summarized in Fig. 1. Subsequently, subject
specific neural activity and BOLD time courses as well as spatial maps are
obtained by weighted average informed by the association matrix W .

Fig. 1. For each task, we concatenate all session data and compute n CHA runs for
each subject. We obtain c × n × #subj components. Each component consists of a
neural activity time course, BOLD time course and spatial map. We cluster all spatial
maps with a NMF and cross-validate to obtain an optimal decomposition with copt
per task. We use the individual weights of the association matrix W to compute a
weighted average of neural activity time course, BOLD time course and spatial maps
per component.

3 Results

3.1 Simulation Data

Figure 2 shows the results from simulated data; the simulation data contains
four components (top left) and their corresponding neural activity time courses
(bottom row). Cross-validation (bottom left) results in a very similar error for
four and more components. We obtained neural activity time courses and spatial
maps using copt = 4. Our technique is able to find a close estimate of the correct
dimensionality of the decomposition and recovers the respective time course and
spatial map of each component successfully.
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Fig. 2. The optimal decomposition into copt is informed by cross-validation (bottom
left). Original spatial maps are recovered by our technique (top row) as well as their
corresponding neural activation profiles (bottom row).

3.2 Imaging Data

We obtain an optimal group decomposition into copt components for each task
that provides weighted averages of the neural activity time course and spatial
map per component in each individual subject as outlined in Fig. 1. For exam-
ple, the optimal value of copt for the motor task is 50 components determined by
cross-validation with 9-fold Gabriel holdout as depicted in Fig. 3. Six of the 50
components with their corresponding spatial map, neural activation and BOLD
time course for subject one are depicted for the motor task in Fig. 4. All first
sessions for all three tasks for each subject are included in the Supplementary
Material. We found five activated brain networks occurring in all tasks. The
Default Mode Network (DMN), Visual Network, Precuneus Network, Salient
Network, Right and Left Central Executive Network (RCEN and LCEN). We
examined the correlation of the neural activation time course in these five net-
works with the visual cues in each task for all sessions summarized in box-plots
depicted in Fig. 3. The neural activation in the Visual Network follows the visual
cues with a small delay as seen in Fig. 4. The Salient Network also exhibits minor
correlation to the visual stimuli, while most other networks, such as the DMN,
express unrelated neural activity to the task experiment.

4 Discussion

We have presented a new technique that simultaneously decomposes the observed
BOLD signal into maps of spatial position, neuronal activity time courses, and
hemodynamic responses.

This has several advantages over existing methods. In task-based fMRI the
general linear model relates the experiment time course to observed BOLD fluc-
tuations, but does not allow for ongoing spontaneous BOLD fluctuations unre-
lated to the task. Furthermore, it models underlying neural activity as switching
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Fig. 3. We conducted a 9-fold cross-validation with Gabriel holdout to determine an
optimal decomposition for each individual task that fits all subject sessions. The three
figures on the right depict the correlation of the neural activation time course of com-
mon brain networks to the visual cues in motor, memory and glass-lexical task among
all sessions and subjects.

Fig. 4. The first four activated brain regions belong to the Sensory-Motor (SMN) net-
work and relate to left and right foot, tongue, left and right hand stimuli, respectively.
The fifth and sixth brain network are Visual Network (VN) and Default Mode Network
(DMN), respectively. The blue lines represent parts of the block design of the motor
task. The red and green line respectively represent neural activity and BOLD signal
change in each individual network. We observe that the first five networks follow the
respective block stimuli or visual cues given during the task. In contrast, the DMN
network exhibits a neural activation profile unrelated to the task but remains strongly
detectable.
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from off to on instantly. A comprehensive GLM analysis of the several contrasts
for the MSC dataset is available4. Our generative model estimates the underlying
neuronal activity time course and does not know the underlying experimental
design and it is therefore truly unsupervised. When compared to resting-state
fMRI, matrix decomposition techniques are often used to extract brain net-
works [7,8]. The disadvantage of these techniques is that they require certain
statistical assumptions to hold for the underlying sources of interest. Although
effective at removing scanner- or physiological motion-related noise sources, they
approximate statistical independence with non-linear functions. The chosen non-
linearity has a strong influence on the obtained value distribution of voxel inten-
sities and thus its spatial characteristics in the case of BOLD-fMRI. Additionally,
the seminal work by [9] has shown that the commonly used algorithms in ICA,
FastICA and InfoMax, tend to produce sparse rather than independent sources
in simulated BOLD-fMRI data. This has shifted the focus in the recent years
to sparse decomposition techniques [8,9] with weaker model assumptions. How-
ever, the these techniques require regularization and therefore hyper-parameter
tuning with some sort of cross-validation, which is computationally expensive
or intractable depending on the number of parameters to tune. For example,
the most similar approach [2] to our proposed CHA generative model requires
to tune a spatial and a temporal regularization hyper-parameter. Given that a
5 mm spatial smoothing kernel was applied, the value of the spatial regulariza-
tion hyper-parameter is weakly motivated and could supposedly not be cross-
validated due to the long individual subject processing time (5 h). The spatial
smoothing kernel size hyper-parameter varies in studies between 3 to 12 mm.
The kernel size thus determines partial-volume effects at both the intra- and
inter-individual level. Unique subject network representations are therefore lost
or compromised.

Combined, these limitations of common pre- and post-processing techniques
potentially make subsequent analysis incomparable. Our proposed generative
model delivers smooth spatial network maps with minimal pre-processing and
without spatial regularization. Our technique exploits what is known about the
neurovascular coupling between neuronal activity and blood perfusion. It does
not require artificial spatial or temporal regularization but leverages biological
prior information. The decomposition of a BOLD-fMRI scan into spatial network
maps, functional time-courses and hemodynamic responses opens the door to
sophisticated analyses at both group and single-subject level to examine neural
activity in both, spontaneously activating networks and networks engaged in an
extrinsic task. The obtained neural activity profile per network provides a means
to quantify the activity during a 5 to 10-min scan, opening new analysis routes
to clinical diagnosis and drug testing in neurological disorders.

Our technique relies on finding an optimal number of components similar
to all matrix factorization techniques. This is challenging because the brain
will form networks dynamically and dependent on the task. We find a good

4 https://neurovault.org/collections/2447/.

https://neurovault.org/collections/2447/
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approximation of individual interacting networks during task and rest by apply-
ing sophisticated cross-validation and model averaging strategies.

Our proposed Convolutional Hemodynamic Autoencoder will therefore pro-
vide new insights about the underlying cause of BOLD signal change in task and
task-free BOLD-fMRI in current and future large fMRI cohort studies.
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