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Abstract. Cross subject functional studies of cerebral cortex require
cortical registration that aligns functional brain regions. While cortical
folding patterns are approximate indicators of the underlying cytoar-
chitecture, coregistration based on these features alone does not accu-
rately align functional regions in cerebral cortex. This paper presents
a method for cortical surface registration (rfDemons) based on resting
fMRI (rfMRI) data that uses curvature-based anatomical registration as
an initialization. In contrast to existing techniques that use connectivity-
based features derived from rfMRI, the proposed method uses ‘syn-
chronized’ resting rfMRI time series directly. The synchronization of
rfMRI data is performed using the BrainSync transform which applies
an orthogonal transform to the rfMRI time series to temporally align
them across subjects. The rfDemons method was applied to rfMRI from
the Human Connectome Project and evaluated using task fMRI data to
explore the impact of cortical registration performed using resting fMRI
data on functional alignment of the cerebral cortex.

1 Introduction

Group structural and functional studies of brain imaging data require registration
across a population in order to draw inferences at finer scales. For studies involving
the cerebral cortex it is often sufficient to perform this registration with respect
to a 2D parameterization of the cortical surface. Most cortical surface registration
methods are guided either by sulcal and gyral landmarks or curvature maps that
reflect cortical folding [1,2]. The resulting registrations are appropriate for quan-
tifying structural characteristics across populations, but there is ample evidence
that regions of functional specialization are not accurately aligned across subjects
using only anatomical landmarks [3]. Poor alignment can result in reduced statis-
tical power when regions of functional activation do not accurately align. The com-
mon practice of spatial smoothing can overcome this problem to some degree, but
limits our ability to localize and detect effects at finer scales. Functional regions
can be better identified or aligned using a series of functional localizers as is com-
mon in fMRI studies of the visual system [4]. But this task-driven approach is
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limited by the number of regions that can be mapped in each subject using a dis-
crete set of tasks. A more general approach uses data from subjects watching a
movie to drive alignment of the entire cerebral cortex [5]. Another alternative is
to use resting fMRI (rfMRI) data. While there is evidence for involvement of a
large fraction of cerebral cortex in resting activity, using rfMRI for intersubject
alignment presents a challenge because resting time-series cannot be directly com-
pared across subjects as is the case for task fMRI.

A recent series of papers have used the concept of hyperalignment to better
align functional data across subjects [6]. The main idea is to use a linear transfor-
mation on the data from each subject to maximize the similarity of response pro-
files in a set of task data. This can be viewed as a method for spatial alignment that
does not enforce any topological restrictions on the spatial mapping but instead
uses linear combinations of the data from a local neighborhood to produce a spa-
tial inter-subject correspondence. Here we explore an alternative to this approach
in which we use a topologically-constrained nonrigid deformation of the cortical
surfaces to perform inter-subject registration. An alternative recent method also
used rfMRI data for this purpose [7]. In that case, z-score maps derived from ICA
analysis of the functional activations were used to perform group-wise cortical sur-
face registration. Spectral features derived from fMRI connectivity matrices have
also been used for driving cortical registration [5,8].

An orthogonal transform termed BrainSync performs synchronization of
time-series across subjects at homologous locations in the brain [9]. The trans-
form exploits the correlation structure common across subjects to perform the
synchronization. When synchronized, rfMRI signals become approximately equal
at homologous locations across subjects. The BrainSync transform is lossless
and preserves correlation structures. As a result of synchronization we can
directly compare time series across subjects. We can then use the aligned time
series themselves as a feature to induce functional correspondence through non-
rigid registration of the surfaces. This new approach to functional alignment is
described here. Starting with the anatomically registered cortical surfaces, each
cortical hemispheres is first mapped to a unit square flat map. The rfMRI data
are then mapped to these squares and used as features to coregister across sub-
jects using a modified demons algorithm. The distortion in the flat mapping is
compensated for using the metric tensor determinant. The method is evaluated
using resting and task data from the HCP project database.

2 Materials and Methods

As input, we assume structural and rfMRI images for each subject. The struc-
tural images are preprocessed to generate cortical surface representations and
coregistered to a common atlas. The fMRI data are preprocessed using HCPs
minimal processing pipeline [10]. They are then mapped to a common atlas using
the mapping computed from the structural images. This preprocessing results
in structurally coregistered V × T data matrices, one per subject, with V ver-
tices in the cortical surface mesh and T time points. We refine this intersubject
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alignment using the rfMRI by first synchronizing their time-series with Brain-
Sync, and then use these time-series as features in the alignment algorithm.

Flat Mapping and Metric Computation: We generate a flat map of the
cortical surface mesh of the atlas to which the fMRI data have been mapped for
each subject. A harmonic map is computed on the unit square for each hemi-
sphere such that the inter-hemispheric fissure that divides the two hemispheres
is mapped to the boundary of the square and rest of the surface is mapped to its
interior. The fMRI data is resampled onto a 256 ×256 regular grid on the square
for each hemisphere using linear interpolation, resulting in a 256 ×256 ×T fMRI
data representation. For fast computation, the dimensionality of the dataset was
reduced using PCA to 20 (chosen based on rank analysis of the data). The SVD
of a reference subject’s V × T fMRI data was used to compute a set of 20
temporal basis functions onto which the subject’s synchronized fMRI data was
projected to produce data of size 256 ×256 × 20. The 3D surface coordinates of
the cortical mesh were also resampled to the regular grid and the metric tensor
computed using finite differences (Fig. 1).
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+
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Fig. 1. (a) Mean curvature shown on the cortical surface and its flat harmonic map to
the unit square; (b) the determinant of the metric tensor induced by the flat harmonic
map is shown on the cortex and the flat map.
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Fig. 2. Flowchart of rfDemons algorithm: the cortical
surface is mapped to the unit square. The correspond-
ing synchronized rfMRI datasets for subject and refer-
ence are then re-sampled on the square. The deforma-
tion field that registers the rfMRI data is computed using
the metric-compensated symmetrized demons algorithm.
The deformation is then applied to the subject rfMRI
data to map it back to the cortical surface mesh.

rfDemons: rfMRI-Based
Cortical Registration:
We start with Brain-
Sync transformed rfMRI
data for two individual
datasets, with one desig-
nated as the ‘reference’
(or fixed) and the other
as the ‘subject’ (or mov-
ing). Each is represented
on the square atlas map
as a 256 × 256 × 20 data
matrix.

Let F (x(τ), t) denote
the rfMRI data at the
tth fMRI time point, at
spatial location x in the
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square with x(τ) a set of deformation fields, parameterized by τ . We define
F (x(τ), t) to be the rfMRI data of the subject when τ = 0 and the subject
optimally matched to the reference when τ = 1, so that the subject data are
gradually deformed to the reference as τ goes from 0 to 1. Since the input rfMRI
data is synchronized, we can use an optical flow formulation F (x(τ), t) = F (x, t)
[11], i.e. the data are constant with respect to τ , and it is possible to match the
data from subject to reference with an appropriate deformation map x(1). Tak-
ing the derivative of F with respect to τ , we get dF

dτ (x(τ), t) = ∇xF (x(τ), t)·v(x)
where v(x) = dx(τ)

dτ is the velocity of point x and ∇x is the spatial gradient.
Our goal is to estimate the velocity v(x) at each iteration. The solution of this
equation can be obtained in the least squares sense over the cortical surface by
minimizing the cost

C(v) =
∫ ∫ (

∇xF (x(τ), t) · v(x) − dF (x(τ), t)
dτ

)2

det (g(x)) dxdt (1)

over v, where g(x) indicates the surface metric tensor that encodes the dis-
tortion from the surface to the square map of the surface (Fig. 1). Since g(x)
is slowly varying spatially compared to F , we can replace the images F by
F g =

√
det (g(x))F . Equation 1 shows that v cannot be uniquely defined,

since we only observe the projection of v onto the gradient of F . We therefore
select the minimum L2 norm solution for v. In continuous form using varia-
tional calculus we solve the system of equations: v(x)

∫ ‖∇F g(x(τ), t)‖2 dt =∫ dF g(x(τ),t)
dτ ∇F g(x(τ), t)dt to get

v(x) =
∫

dF g(x(τ), t)
dτ

∇F g(x(τ), t)dt/

∫
‖∇F g(x(τ), t)‖2 dt. (2)

Following [11–13], we add the demons force in the denominator for stability when
the spatial gradient is small, to obtain:

v(x) =

∫ dF g(x(τ),t)
dτ ∇F g(x(τ), t)dt

∫ ‖∇F g(x(τ), t)‖2 dt + α2
∫ (

dF g(x(τ),t)
dτ

)2

dt
.

The corresponding discrete version is

vk(x) =
∑N

n=1(F
g
T (x, n) − F g

M ◦ T k(x)) · ∇F g
T (x, n)∑

n ||∇F g
T (x)||2 + α2

∑
n(F g

T (x) − F g
M ◦ T k(x))2

, (3)

where n is the fMRI time point and ◦ represents the composition operator. FT

is the target image and FM the moving image, T k(x) is the deformation at the
kth iteration. The hyperparameter α controls for stability and, following [11], it
can be shown that the displacement in Eq. 3 is bounded by 1/2α.
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We will consider the symmetric version similar to that proposed in [14]:

vk(x) =
∑

n(F g
T (x, n) − F g

M ◦ T k(x)) · ∇F g
T (x, n)∑

n ||∇F g
T (x, n)||2 + α2

∑
n(F g

T (x, n) − F g
M ◦ T k(x))2

+
∑

n(F g
T (x, n) − F g

M ◦ T k(x, n)) · ∇F g
M (x, n)∑N

n=1 ||∇F g
M (x, n)||2 + α2

∑N
n=1(F

g
T (x, n) − F g

M ◦ T k(x))2

that leads to an approximately inverse consistent deformation field. The steps
of velocity estimation v(x), accumulation to the deformation field (T k+1(x) ←
T k(x) + vk(x)), and warping the subject’s rfMRI data using this deformation
T (x), are iterated until the norm of the velocity becomes small (e.g. 10−6th of
a pixel). A flowchart for the rfDemons method is shown in Fig. 2. The execu-
tion time for the HCP datasets used below (32K per hemisphere cortical mesh
density, 1200 time samples) is 3–4 min on a typical workstation (Pentium V,
16 GB RAM) with a minimum memory requirement of 4 GB. The relatively
light computational load of the algorithm is due to the fact that we perform
the registration in the flat square space instead of on the sphere (as in spherical
demons [8]). Since we compensate for the metric tensor corresponding to the
flat map, we minimize regional biases in deformation fields that would otherwise
result from metric distortion in the cortical surface maps.

3 Validation and Results

Data: We used minimally preprocessed (ICA-FIX denoised) resting and task
fMRI data from 40 independent subjects (all right handed, age 26–30, 16 male
and 24 female), which are publicly available from the Human Connectome
Project (HCP) [10,15]. We used data that was acquired in two independent rest-
ing fMRI sessions (with same LR phase encoding) of 15 min each (TR = 720 ms,
TE = 33.1 ms, 2 mm × 2 mm × 2 mm voxels) with the subjects asked to relax and
fixate on a projected bright cross-hair on a dark background.

Intra-subject and Inter-subject Consistency: For the first study, we
coregistered two independent sessions of the same subject to a reference and
checked for differences in the resulting deformation fields. If individual differ-
ences between cortical anatomy and functional specialization, as reflected in the
rfMRI signal, are indeed driving the deformation then we would expect to see

  Subject 1 Session 1                             Subject 1 Session 2

0

10 mm
  Subject 2 Session 1                          Subject 2 Session 2

Fig. 3. Magnitude of the rfDemons deformation fields for two subjects, two sessions
each. Note the cross-session consistency in the deformation fields for each subject.
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Fig. 4. (a) Intra-subject standard deviation maps for rfDemons; (b) Inter-subject stan-
dard deviation maps for rfDemons.

similar deformations for two sessions of the same subject. Similarly, we would
expect to see differences in these deformation fields for different subjects. In
other words, the inter-subject variance should be much larger than the intra-
subject variance. To explore this issue, the deformations from the unit square
were mapped back to the original surface with metric compensation to represent
the true deformations on the cortical surface. Our expectations are confirmed
anecdotally in Fig. 3 which shows the magnitudes of these deformations for two
sessions each for two subjects. Within subject deformations are very similar, but
they differ markedly across subjects. Cross-subject and cross-session differences
were further quantified by computing the standard deviations of the deformation
difference across sessions for each subject and averaged over subjects (Fig. 4(a)),
and also the standard deviation of the deformation differences across subjects,
averaged over sessions for all subjects (Fig. 4(b)). Again, the cross-subject differ-
ence is much larger than within subject cross-session differences. Somatomotor
cortex shows low s.d. of deformation across subjects indicating that anatom-
ical registration also aligns functionally in this region. This is expected since
these areas are well defined by the pre and post central sulci. In contrast, the
visual areas show much larger inter-subject variability. Again, this is consistent
with the known variability of visual functional areas with respect to cortical
anatomy, and the reason that functional localizers are frequently used in these
areas. The within-subject cross-session maps indicates generally low variability
with the exception of areas V1-V4. Performance in this area requires further
investigation.

Table 1. Correlations between subject and reference
z-scores before (structural) and after (rfDemons) func-
tional alignment. We list the median correlation over
subjects and interquartile distance together with com-
puted p-values.

Task Contrast Structural rfDemons p-value

Emotion faces shapes 0.32(0.11) 0.34(0.10) 5.0E-8

Gambling punish reward 0.03(0.04) 0.03(0.06) 0.01

Language math story 0.48(0.09) 0.54(0.1) 2.7E-8

Motor t avg 0.27(0.10) 0.29(0.10) 1.6E-6

Relational match rel 0.22(0.10) 0.23(0.13) 3.2E-7

Social random tom 0.24(0.13) 0.25(0.14) 5E-8

Task-Data Mapping: We
also used task fMRI data
to validate the results of
rfDemons registration. We
considered z-score maps for
the emotion, gambling, lan-
guage, motor, relational and
social tasks in the HCP
dataset [15]. In order to val-
idate the cortical alignment
obtained from the rfMRI
data, we computed the map-
ping between the subject and reference rfMRI data by rfDemons and applied the
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resulting deformation map to the z-score maps from the task fMRI data. Our
underlying hypothesis is that rfMRI based registration will improve functional
alignment of the cortical surface, which will result in turn in better alignment
across subjects of the z-score maps from the task data. To perform this compar-
ison, for each task we computed the correlation between the z-score maps for
each individual and the reference before and after functional alignment. Median
and interquartile values are listed in Table 1.

The before and after alignment correlations were compared using the
Wilcoxon ranksum test (1-sided, paired) of the null hypothesis that the paired
difference in the correlations has zero median. A significant increase in the corre-
lation of z-score maps of reference and subjects was observed in all cases as shown
in Table 1. This result indicates that the resting-fMRI based rfDemons registra-
tion is able to improve inter-subject alignment of functional regions as evoked
through a series of tasks. Additionally, we averaged the z-score maps across sub-
jects before and after rfDemons alignment. Regions of significant activity lie in
the tails of the distribution of these average z-score maps. The ability to more
reliably detect this activation should therefore be reflected in a larger number of
spatial locations that are outliers in this distribution. We computed the number
of vertices on the cortical surface that exceeded a given z-score threshold, com-
puted as a function of that threshold, in Fig. 5 for the language task (math vs.
story contrast). As expected, we see a larger fraction of vertices exceeding the
higher thresholds after rfDemons alignment.

4 Discussion and Conclusion
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Fig. 5. Number of vertices in the cortical
surface mesh above given threshold for the
averaged z-score maps over subjects, for
the language task (math story) data before
and after rfDemons registration.

We have described a novel method
(rfDemons) for functional alignment
of the cerebral cortex using resting
fMRI data. Our studies shows a high
degree of within-subject consistency
through most of the cortex except in
the visual cortex. This latter observa-
tion may limit applicability in visual
cortex, although the problem could
be addressed using data from a com-
bination of resting and visual stimu-
lation. Between subject comparisons
indicate a strong spatial dependence
on the degree of variability across sub-
jects. Again, this is most pronounced
in visual cortex, and is smaller in
regions, such as somatomotor cortex,
that are known to be well defined by anatomical landmarks. Through appli-
cation of the rfDemons registration results to task fMRI data we were able to
explore whether functional registration improves the alignment of task-evoked



rfDemons: Resting fMRI-Based Cortical Surface Registration 205

activity. Through correlation studies we see small but significant improvement
in the correlation of z-score maps between subjects after rfDemons alignment.
This improvement is seen over several different contrasts representing multiple
different functional tasks. We also saw an increase in the number of vertices
in which the group averaged z-score exceeded a given threshold, indicating the
potential for increased sensitivity in detecting task-related activity.
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