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Abstract. Normative modeling has recently been proposed as an alter-
native for the case-control approach in modeling heterogeneity within
clinical cohorts. Normative modeling is based on single-output Gaus-
sian process regression that provides coherent estimates of uncertainty
required by the method but does not consider spatial covariance struc-
ture. Here, we introduce a scalable multi-task Gaussian process regres-
sion (S-MTGPR) approach to address this problem. To this end, we
exploit a combination of a low-rank approximation of the spatial covari-
ance matrix with algebraic properties of Kronecker product in order to
reduce the computational complexity of Gaussian process regression in
high-dimensional output spaces. On a public fMRI dataset, we show that
S-MTGPR: (1) leads to substantial computational improvements that
allow us to estimate normative models for high-dimensional fMRI data
whilst accounting for spatial structure in data; (2) by modeling both spa-
tial and across-sample variances, it provides higher sensitivity in novelty
detection scenarios.
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1 Introduction

Understanding the underlying biological mechanisms of psychiatric disorders
constitutes a significant step toward developing more effective and individual-
ized treatments (i.e., precision medicine [11]). Recent advances in neuroimag-
ing and machine learning provide an exceptional opportunity to employ brain-
derived biological measures for this purpose. While symptoms and biological
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underpinnings of mental diseases are known to be highly heterogeneous, data-
driven approaches play an important role in stratifying clinical groups into more
homogeneous subgroups. Currently, off-the-shelf clustering algorithms are the
most predominant approaches for stratifying clinical cohorts. However, the high-
dimensionality and complexity of data beside the use of heuristics to find opti-
mal clustering solutions negatively affect the reproducibility and reliability of
resulting clusters [10]. Normative modeling [9] offers an alternative approach to
model biological variations within clinical cohorts without needing to assume
cleanly separable clusters or cohorts. This approach is applicable to most types
of neuroimaging data such as structural/functional magnetic resonance imaging
(s/fMRI).

Normative modeling employs Gaussian process regression (GPR) [16] to pre-
dict neuroimaging data on the basis of clinical and/or behavioral covariates.
GPR, and in general Bayesian inference, can be seen as an indispensable part
of the normative modeling as it provides coherent estimates of predictive con-
fidence. These measures of predictive uncertainty are important for quantifying
centiles of variation in a population [9]. GPR also provides the possibility to
accommodate both linear and nonlinear relationships between clinical covari-
ates and neuroimaging data.

The variant of GPR originally employed for normative modeling aims to
model only a single output variable. Thus in normative modeling, one should
independently train separate GPR models for each unit of measurement (e.g.,
for each voxel in a mass-univariate fashion). Such a simplification ignores the
possibility of modeling and capitalizing on the existing spatial structure in the
output space. However, GPR can be extended to perform a joint prediction
across multiple outputs in order to account for correlations between variables
in neuroimaging data (for example different voxels in fMRI data). Boyle and
Frean [6] proposed to employ convolutional processes to express each output as
the convolution between a smoothing kernel and a latent function. This idea
is later adopted by Bonilla et al. [5] to extend the classical single-task GPR
(STGPR) to multi-task GPR (MTGPR) by coupling a set of latent functions
with a shared GP prior in order to directly induce correlation between output
variables (tasks). They proposed to disentangle the full cross-covariance matrix
into the Kronecker product of the sample (in input space) and task (in output
space) covariance matrices. This technique provides the possibility to model both
across-sample and across-task variations. Despite its effectiveness in modeling
structures in data, MTGPR comes with extra computational overheads in time
and space, especially when dealing with high-dimensional neuroimaging data.
We briefly review recent efforts toward alleviating these computational burdens.

1.1 Toward Efficient and Scalable MTGPR

For N samples and T tasks, the time and space complexity of MTGPR are
O(N3T 3) and O(N2T 2), respectively. These high computational demands (com-
pared to STGPR with O(N3T ) and O(N2T )) are mainly due to the need for
computing the inverse cross-covariance matrix in learning and inference phases.
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In neuroimaging problems that we consider, these can both be relatively high
where N in generally in the order of 102 − 104 and T is in the order of 104 − 105

or even higher. Therefore, improving the computational efficiency of MTGPR is
crucial for certain problems, and there have been several approaches proposed
for this in the machine learning literature [3,13]. Here we briefly review two main
directions to address the computational tractability issue of MTGPR.

In the first set of approaches, approximation techniques are used to improve
estimation efficiency. Bonilla et al. [5] made one of the earliest efforts in this
direction, in which they proposed to use Nyström approximation on M induc-
ing inputs [13] out of N samples in combination with the probabilistic princi-
pal component analysis, in order to approximate reduced M -rank and P -rank
sample and task covariance matrices, respectively. Their approximation reduced
the time complexity of hyperparameter learning to O(NTM2P 2). Elsewhere,
Alvarez and Lawrence [2] proposed to approximate a sparse version of MTGPR,
assuming conditional independence between each output variable with all oth-
ers given the input process. This assumption besides using M out of N input
samples as inducing inputs reduces the computational complexity of MTGPR to
O(N3T +NTM2) and O(N2T +NTM) in time and storage, where for N = M is
the same as a set of T independent STGPRs. Alvarez et al. in [4] extended their
previous work by developing the concept of inducing function rather than induc-
ing input. Their new approach so-called variational inducing kernels achieves
time complexity of O(NTM2).

The second set of approaches utilize properties of Kronecker product [8]
to reduce the time and space complexity in computing the exact (and not
approximated) inverse covariance matrix. Stegle et al. [15] proposed to use
these properties in combination with eigenvalue decomposition of input and
task covariance matrices for efficient parameter estimation, and likelihood eval-
uation/optimization in MTGPR. In this method, the joint covariance matrix is
defined as a Kronecker product between the input and task covariance matrices.
This approach reduces the time and space complexity of MTGPR to O(N3+T 3)
and O(N2 + T 2), respectively. To account also for structured noise, Rakitsch et
al. [14] extended this method by using two separate Kronecker products for the
signal and noise. Importantly, this provides a significant reduction in computa-
tional complexity using all samples (i.e., not just inducing inputs), and is exact
in the sense that it does not require any approximation or relaxing assumptions.

Our Contribution: In spite of all aforementioned efforts, applications of
MTGPR in encoding neuroimaging data from a set of clinically relevant covari-
ates remained very limited, mainly due to the high dimensionality of the output
space (i.e., very large T ). Our main contribution in this text addresses this prob-
lem and extends MTGPR to the normative modeling of neuroimaging data. To
this end, we use a combination of low-rank approximation of the task covariance
matrix with algebraic properties of Kronecker product in order to reduce the
computational complexity of MTGPR. Furthermore, on a public fMRI dataset,
we show that: (1) our method makes MTGPR possible on very high-dimensional
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output spaces; (2) it enables us to model both across-space and across-subjects
variations, hence provides more sensitivity for the resulting normative model in
novelty detection.

2 Methods

2.1 Notation

Boldface capital letters, A, and capital letters, A, are used to denote matrices and
scalar numbers. We denote the vertical vector which is resulted from collapsing
columns of a matrix A ∈ R

N×T with vec(A) ∈ R
NT . In the remaining text,

we use ⊗ and � to respectively denote Kronecker and the element-wise matrix
products. We denote an identity matrix by I; and the determinant, diagonal
elements, and the trace of matrix A with |A|, diag(A), and Tr[A], respectively.

2.2 Scalable Multi-task Gaussian Process Regression

Let X ∈ R
N×F be the input matrix with N samples and F covariates. Let

Y ∈ R
N×T represent a matrix of response variables with N samples and T tasks

(here, neuroimaging data with T voxels). The multi-task Kronecker Gaussian
process model (MT-Kronprod) [15] is defined as:

p(Y | D,R, σ2) = N (Y | 0,D ⊗ R + σ2I) , (1)

where D ∈ R
T×T and R ∈ R

N×N are respectively the task and sample covari-
ance matrices (here, modeling correlations across voxels and samples separately).
Despite its effectiveness in modeling both samples and tasks variations, the appli-
cation of MT-Kronprod is limited when dealing with very large output spaces,
such as neuroimaging data, mainly due to the high computational complexity of
matrix diagonalisation operations in the optimization and inference phases. We
propose to address this problem by using a low-rank approximation of D.

Let Φ : Y → Z be an orthogonal linear transformation, e.g., principal com-
ponent analysis (PCA), that transforms Y to a reduced latent space Z ∈ R

N×P ,
where P < T , and we have Z = Φ(Y) = YB. Here, columns of B ∈ R

T×P

represent a set of P orthogonal basis functions. Assuming a zero-mean matrix
normal distribution for Z, by factorizing its rows and columns we have:

p(Z | C,R) = MN (0,C ⊗ R) =
exp(− 1

2
Tr[C−1B�Y�R−1YB])√
(2π)NP |C|P |R|N

, (2)

where C ∈ R
P×P and R ∈ R

N×N are column and row covariance matrices of
Z. Using the trace invariance property under cyclic permutations, the noise-free
multivariate normal distribution of Y can be approximated from Eq. 2:

p(Y | D,R) ≈ p(Y | C,B,R) =
exp(− 1

2
Tr[BC−1B�Y�R−1Y])√

(2π)NT
∣∣BCB�∣∣T |R|N

, (3)
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where D is approximated by BCB�. Our scalable multi-task Gaussian process
regression (S-MTGPR) model is then derived by marginalizing over noisy sam-
ples:

p(Y | D,R, σ2) ≈ p(Y | C,B,R, σ2) = N (Y | 0,BCB� ⊗ R + σ2I) . (4)

Predictive Distribution: Following the standard GPR framework [16] and
setting D̃ = BCB�, the mean and variance of the predictive distribution of
unseen samples, i.e., p(vec(Y)∗ | vec(M∗),V∗), can be computed as follows:

vec(M∗) = (D̃ ⊗ R∗)(D̃ ⊗ R + σ2I)−1vec(Y), (5a)

V∗ = (D̃ ⊗ R∗∗) − (D̃ ⊗ R∗)(D̃ ⊗ R + σ2I)−1(D̃ ⊗ R∗�), (5b)

where R∗∗ ∈ R
N∗×N∗

is the covariance matrix of N∗ test samples , and R∗ ∈
R

N∗×N is the cross-covariance matrix between test and training samples.

Efficient Prediction and Optimization: For efficient prediction, and fast
optimization of the log-likelihood, we extend the approach proposed in [14,15]
by exploiting properties of Kronecker product, and eigenvalue decomposition for
diagonalizing the covariance matrices. Then the predictive mean and variance
can be efficiently computed by:

M∗ = R∗URỸU�
CCB�, (6a)

V∗ = (D̃ ⊗ R∗∗) − (BCUC ⊗ R∗UR)K̃−1(U�
CCB� ⊗ U�

RR
∗�

), (6b)

where C = UCSCU�
C and R = URSRU�

R are eigenvalue decomposition of covariance
matrices, K̃ = SC ⊗ SR + σ2I, and vec(Ỹ) = diag(K̃−1) � vec(U�

RYBUC)1. Based
on our assumption on the orthogonality of components in B, we set B−1 = B� and
B�B = I. Note that in the new parsimonious formulation, heavy time and space
complexities of computing the inverse kernel matrix is reduced to computing the inverse
of a diagonal matrix, i.e., reciprocals of diagonal elements of K̃. For the predictive
variance, explicit computation of the Kronecker product is still necessary but this can
easily be overcome by computing the predictions in mini-batches. For the negative log
marginal likelihood of Eq. 4, we have:

L = −N × T

2
ln(2π) − 1

2
ln

∣∣∣K̃
∣∣∣ − 1

2
vec(U�

RYBUC)�vec(Ỹ) . (7)

The proposed S-MTGPR model has three sets of parameters plus one hyper-
parameter: (1) reduced task covariance matrix parameters ΘC, (2) input covari-
ance matrix parameters ΘR, (3) noise variance σ2 that is parametrized on Θσ2 ,
and (4) P that decides the number of components in B. While the latter should
be decided by means of model selection, the first three sets are optimized by
maximizing L.

1
See supplementary materials for more descriptive derivations of all equations.
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Computational Complexity: The time complexity of the proposed method
is O(N2T +NT 2 +N3 +P 3). The first two terms are related to the matrix mul-
tiplication in computing the squared term in Eq. 7. The last two terms belong
to the eigenvalue decomposition of R and C. The P 3 term can be excluded
because always P ≤ min(N,T ). Thus, for N > T and N < T the time com-
plexity is reduced to O(N3) and O(NT 2), respectively. Thus when N > T or
N < T < N2, our approach is analytically even faster than the baseline STGPR
approach applied independently to each output variable in a mass-univariate
fashion. For N � T , our method is faster than other Kronecker based MTGPRs
by a factor of T/N . Such improvement not only facilitates the application of
MTGPR on neuroimaging data but also it provides the possibility of accounting
for the existing spatial structures across different brain regions. In comparison
to the related work, the proposed method provides a substantial speed improve-
ment, especially when dealing with a large number of tasks. This is while unlike
other approximation approaches, we fully use the potential of all available sam-
ples.

3 Experiments and Results

3.1 Experimental Materials and Setup

In our experiments, we use a public fMRI dataset collected for reconstructing
visual stimuli (black and white letters and symbols) from fMRI data [12]. In this
dataset, fMRI responses were measured while 10×10 checkerboard patch images
were presented to subjects according to a blocked design. Checkerboard patches
constituted random (1320 trials) and geometrically meaningful patterns (720
trials). We use the preprocessed data available in Nilearn package [1] wherein
the fMRI data are detrended and masked for the occipital lobe (5438 voxels).2

Whilst our approach is quite general, we demonstrate S-MTGPR by simulat-
ing normative modeling for novelty detection. Therefore, we aim to predict the
masked fMRI 3D-volume from the presented visual stimuli in an encoding set-
ting. To this end, we randomly selected 600 random pattern trials, for training
the encoding model. The model then learns to represent this reference or norma-
tive class such that anomalous or abnormal samples can be detected and char-
acterised. The rest of non-random patterns (720 trials) and random patterns
(720 trials) are used for evaluating the encoding model and testing anomaly-
detection performance, achieved by fitting a generalised extreme value distribu-
tion to the most deviating voxels. In our experiments, we use PCA to transform
the fMRI data in the training set from the voxel space to Z, and the resulting
P = 10, 25, 50, 100, 250, 500, 1000 PCA components are used as basis matrix B
in the optimization and inference.

We benchmark the proposed method against the STGPR (i.e., mass-
univariate) and MT-Kronprod models in terms of their runtime, performance of
the regression, and quality of resulting normative models. In all models, we use

2
See http://nilearn.github.io/auto examples/02 decoding/plot miyawaki reconstruction.html.

http://nilearn.github.io/auto_examples/02_decoding/plot_miyawaki_reconstruction.html
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Table 1. Three benchmarked methods in our experiments.

Method Time
complexity

No.
parameters

Parameter description

STGPR O(N3T ) 21752 1 for linear and 2 for squared exponential
kernels, 1 for Gaussian likelihood;
multiplied by the number of tasks (5438)

MT-Kronprod O(T 3) 9 1 for linear, 2 for squared exponential,
and 1 for diagonal isotropic kernels;
multiplied by 2 (for sample and task
covariance functions); plus 1 for
Gaussian likelihood

S-MTGPR O(NT 2) 10 Same as MT-Kronprod, plus 1
hyperparameter for the number of PCA
bases

a summation of a linear, a squared exponential, and a diagonal isotropic covari-
ance functions for sample and task covariance matrices in order to accommodate
both linear and non-linear relationships. In all cases, we use an isotropic Gaus-
sian likelihood function. This likelihood function has different functionality in
the STGPR versus MTGPR settings. In STGPR, it is defined independently for
each voxel, thus it handles heteroscedastic, i.e., spatially varying noise. While
in MTGPR a single noise parameter is shared for all voxels, hence it merely
considers homoscedastic, i.e., spatially stationary, noise. The truncated Newton
algorithm is used for optimizing the parameters. Table 1 summarizes the time
complexity and the number of parameters of three benchmarked methods in our
experiments.

We use the coefficient of determination (R2) to evaluate the explained vari-
ance by regression models. In normative modeling, the top 5% values in norma-
tive probability maps are used to fit the generalized extreme value distribution
(see [9]). To evaluate resulting normative models, we employ area under the curve
(AUC) to measure the performance of the model in distinguishing between nor-
mal (here random patterns) from abnormal samples (here non-random patterns).
All the steps (random sampling, modeling, and evaluation) are repeated 10 times
in order to estimate the mean and standard deviation of the runtime, R2, and
AUC. All experiments are performed on a system with Intel R©Xeon R©E5-1620 0
@3.60GHz CPU and 16GB of RAM3.

3.2 Results and Discussion

Figure 1 compares the runtime, R2, and AUC of STGPR and MT-Kronprod,
with those of S-MTGPR for different number of bases. As illustrated in Fig. 1(a)
S-MTGPR is faster than other approaches where the total runtime of MT-
Kronprod (3 days) and STGPR (6 h) can be reduced to 16 min for P = 25.
3

The experimental codes are available at https://github.com/smkia/MTNorm.

https://github.com/smkia/MTNorm
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(a) (b) (c)

(Zoomed)

Fig. 1. Comparison between S-MTGPR, STGPR, and MT-Kronprod in terms of: (a)
optimization and prediction runtime, (b) average regression performance (R2) across
all voxels, and (c) AUC in abnormal sample detection using normative modeling.

This difference in runtime is even more pronounced in case of the optimiza-
tion time where S-MTGPR is at least (for P = 1000) 33 and 89 times faster
than STGPR and MT-Kronprod, respectively. The multi-task approaches are
slower than STGPR in the prediction phase mainly due to the mini-batch imple-
mentation of the prediction variance computation (to avoid memory overflow).
Figure 1(b) shows this computational efficiency is achieved without penalty to
the regression performance; where for certain number of bases the S-MTGPR
shows equivalent and even better R2 than STGPR and MT-Kronprod. Further-
more, Fig. 1(c) demonstrates that multi-task learning, by considering spatial
structures, generally provides a more accurate normative model of fMRI data in
that it more accurately detects samples that were derived from a different distri-
bution to those used to train the model. This fact is well-reflected in higher AUC
values for S-MTGPR at P = 25, 100, 250, 500, 1000. It is worthwhile to empha-
size that these improvements are achieved by reducing the degree-of-freedom of
the normative model from 21752 for STGPR to 10 for S-MTGPR (see Table 1).

4 Conclusions and Future Work

Assuming a matrix normal distribution on a reduced latent output space, we
introduced an efficient and scalable multi-task Gaussian process regression app-
roach to learning complex association between external covariates and high-
dimensional neuroimaging data. Our experiments on an fMRI dataset demon-
strate the superiority of the proposed approach against other single-task and
multi-task alternatives in terms of the computational time complexity. This
superiority was achieved without compromising the regression performance, and
even with higher sensitivity to abnormal samples in the normative modeling
paradigm. Our methodological contribution advances the current practices in
the normative modeling from the single-voxel modeling to multi-voxel structural
learning. For future work, we will consider enriching the proposed approach by
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embedding more biologically meaningful basis functions [7], structural modeling
of non-stationary noise, and applying our method to clinical cohorts.
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