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Abstract. Diffusion MRI (dMRI) data is increasingly being acquired
on multiple scanners as part of large multi-center neuroimaging stud-
ies. However, diffusion imaging is particularly sensitive to scanner-
specific differences in coil sensitivity, reconstruction algorithms, acqui-
sition parameters as well as the scanner magnetic field strength, which
precludes joint analysis of such multi-site data. Earlier works on dMRI
data harmonization were limited to data acquired on different scanners
but with the same magnetic field strength (3T). In this work, we explore
the possibility of harmonizing dMRI data acquired on scanners with dif-
ferent magnetic field strengths, i.e., 3T and 7T. We propose a linear and
several machine learning based non-linear mapping algorithms that use
rotation invariant spherical harmonic (RISH) features to map the dMRI
data (the raw signal) between scanners without changing the fiber ori-
entations. We extensively validate our algorithms on in-vivo data from
the Human Connectome Project (HCP) where we used data from 40
subjects with scans done on both 7T and 3T scanners (10 training + 30
test). Using several quantitative metrics such as the root mean squared
error (RMSE) in the harmonized dMRI signal and diffusion measures
as well as a fiber bundle overlap measure, our preliminary results on 30
test subjects shows that the convolutional neural network (CNN) based
algorithm can reliably harmonize the raw dMRI signal across magnetic
field strengths. The algorithms proposed are general and can be used for
dMRI data harmonization in multi-site studies.
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1 Introduction

In recent years, several large-scale multi-site neuroimaging studies have been
initiated to collect MRI data pertaining to neurodevelopment as well as dis-
ease [13,14] to increase statistical power. However, directly pooling dMRI data
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acquired from multiple scanners is fraught with problems due to significant differ-
ences in dMRI measures of the same subjects scanned on different scanners [15].
On the other hand, better scanner technologies as well as higher field strength
scanners are becoming more popular as they provide better contrast and reso-
lution in diffusion-weighted (DW) imaging [3,11]. For instance, data from a 7T
scanner reveals details of tissue properties not visible at 3T [16]. However, data
from scanners with different field strengths need to be harmonized to be used
jointly.

Recently, several methods have been proposed to harmonize multi-site data,
or boost the resolution and quality of dMRI data. Mirzaalian et al. [8] provide
a framework for multi-site (3T) harmonization of a single shell (single b-value)
dMRI data with similar acquisition parameters (b-values, number of gradients,
spatial resolution) and magnetic field strength using rotation invariant spherical
harmonics (RISH) features. In [9], the authors use a correction factor for each
diffusion tensor derived measure (fractional anisotropy (FA), mean diffusivity
(MD)) within a region, while the work in [5] uses a location specific statisti-
cal adjustment factor to account for scanner differences. Both these methods
perform data harmonization on the final model derived measures (e.g. DTI mea-
sures) and not the dMRI signal itself. Consequently, data harmonization has
to be done several times independently for each measure, unlike the model-
independent method proposed in this work. We also note that, a few works
[1,12] have proposed an image quality transfer method which utilizes nonlinear
regression to estimate high resolution DTIs or higher order model parameters.
These model specific methods however have not been used in the context of
data harmonization, but are potential candidates. Consequently, we compare
our methods with the work of [1]. Furthermore, the harmonization between mul-
tiple field strengths remains unaddressed.

In this work, we harmonize multi-shell (multiple b-values) dMRI data by
predicting 7T-like diffusion MRI signal from 3T data by mapping their corre-
sponding RISH features. In particular, we propose to learn an efficient mapping
of multi-shell dMRI signal with different spatial resolution and magnetic field
strength (3T and 7T) using deep Convolutional Neural Networks (CNN). We
investigate and propose two methods: voxel-wise linear mapping, and patch-
based non-linear mapping using deep Convolutional Neural Networks (CNN)
which are explained in the following sections.

2 Method

2.1 RISH Features

We represent the dMRI signal S in a basis of spherical harmonics (SH): S ≈∑
l

∑
m ClmYlm, and construct the rotation invariant spherical harmonic (RISH)

features which can be appropriately scaled to modify the dMRI signal without
changing the principal diffusion directions of the fibers. Thus, our goal is to
estimate a voxel-wise linear or a patch-based non-linear mapping of the RISH
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features between 3T and 7T data from the same set of subjects, which can then
be used on test subjects to validate the quality of the mapping.

The following processing was common for both linear and non-linear methods
in Sect. 2.2. Due to differences in spatial resolution between 3T and 7T dMRI
data, we first upsample each DW volume using a 7th-order B-spline which was
shown to perform better than other interpolation schemes [4]. Next, we use a
recently proposed unringing method [6] to remove Gibbs ringing artifact from
each DW volume. Five RISH feature maps Cb,s

l (x; i) for each b-value shell with
SH orders of l = {0, 2, 4, 6, 8} are computed at each voxel location x = (x, y, z) ∈
R

3 for each scanner s as follows:

Cb,s
l (x; t) =

2l+1∑

m=1

Clm(x)2, (1)

where t is the subject number and b = {1000, 2000} is the b-value.

Fig. 1. RISH Features of b = 1000 shell for SH orders of l = {0, 2, 4, 6, 8} are depicted
in each sub-figure from left to right for 3T (top row) and 7T scans (bottom row) for
HCP Subject ID: 102311 ([·, ·]: the range of intensities chosen for visualization).

Figure 1 shows the RISH features of the same HCP subject scanned on 3T
(top) and 7T (bottom) scanner for b = 1000. Each RISH feature captures a
different aspect (frequency content) of the diffusion signal. Note the significantly
increased energy (contrast) in higher order RISH features in 7T data, that is not
quite visible in the 3T data.

2.2 Learning the Mapping of RISH Features from 3T to 7T

Voxel-Wise Linear Mapping: Using 3T RISH features as input, our goal is
to learn the voxel-wise linear mapping of 3T to 7T. To achieve this, first, the
RISH features in the training set are used to create multi-modal RISH feature
templates (antsMultiVariateTemplateConstruction [2]). Once the template space
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is constructed separately for each shell, we define the expected value of the voxel-
wise RISH features as the sample mean E

b,s
l (x′) ≈ ∑Ns

t=1 C
b,s
l (x′; t)/Ns over the

number of training subjects Ns, where s is 3T or 7T scanner and x′ is the voxel
location in the template space. Next, we compute the voxel-wise linear (scaling
only) maps between RISH features of 3T and 7T data in the template space

using: Sl(x′) =
√

E
b,7T
l (x′)

E
b,3T
l (x′)+ε

. We apply this linear map learned from the training

data set to new subjects from the test data, by non-rigid transformation of scale
maps to the subject space. The 7T-like dMRI signal is estimated by scaling
the SH coefficients of the signal at each voxel in the subject space as follows:
Ĉlm(x) = Ŝl(x) Clm(x), where Ŝl(x) is the scale map in the subject space and
Ĉlm(x) is the scaled SH coefficients. The final diffusion signal is then computed
using:

Ŝ(x) =
∑

l

∑

m

Ĉlm(x)Ylm. (2)

Patch-Based Non-linear Mapping Using Deep CNN: Using 3T RISH
features as input, our goal is to learn a nonlinear mapping of 3T to 7T as a
patch-wise regression problem. Such mapping can be learned using the paired
3T and 7T RISH features of training data. We first align 3T and 7T data as
follows: First, we register b0 maps of 3T and 7T data through rigid registration
[2]. The estimated transformation is then applied to each DW volume. Next, the
gradient vectors are rotated using the rotation matrix estimated through rigid
registration. After 3T and 7T DW data are aligned, we compute RISH features
as in Eq. 1. To learn the mapping from 3T to 7T, we construct our deep CNN
with five convolutional layers. Specifically, we used an 9 × 9 RISH feature patch
to learn the mapping.

Fig. 2. Our proposed deep CNN architecture for learning the mapping from 3T to 7T
RISH features for multi-shell data. We used k = 3 as the filter size with five layers.

Figure 2 summarizes our deep CNN architecture. In the first layer, the aim
is to learn a feature representation of the input 3T RISH feature patches. It
includes convolution filters with size of 32 followed by ReLU activation function.
In each layer, RISH features are convolved with a 3 × 3 kernel with 32, 64, 128,
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Table 1. Average RMSE (percentage) in FA, MD, GFA and DWI signal in 30 test
subjects using different 3T to 7T mapping techniques for each shell separately.

RMSE: % Original 3T-7T Linear RF-DTI RF-RISH CNN-RISH

b = 1000

FA 36.49 ± 2.22 6.94 ± 0.019 6.23 ± 0.023 6.01 ± 0.011 5.41± 0.010

MD 40.32 ± 2.67 4.02 ± 0.012 3.44 ± 0.021 3.01 ± 0.008 2.33± 0.013

GFA 38.53 ± 2.13 7.11 ± 0.021 - 6.55 ± 0.015 5.95± 0.011

DWI 39.33 ± 2.45 7.32 ± 0.023 - 6.61 ± 0.012 5.94± 0.010

b = 2000

FA 34.32 ± 2.10 5.97 ± 0.013 5.86 ± 0.019 5.51 ± 0.012 4.95± 0.008

MD 35.44 ± 2.14 3.23 ± 0.012 2.97 ± 0.017 2.76 ± 0.014 2.12± 0.011

GFA 36.66 ± 2.77 6.53 ± 0.014 - 6.03 ± 0.011 5.23± 0.010

DWI 39.43 ± 2.21 7.08 ± 0.021 - 6.51 ± 0.015 5.42± 0.012

Table 2. Overlap (percentage) in various fiber bundles: CST, CB, AF and IOFF traced
in the original 3T and 7T, and the harmonized 7T-like data in 30 test subjects.

Fiber bundle: % 7T vs 3T 7T-like vs 7T 7T-like vs 3T

CST 93.59 ± 3.36 92.98 ± 3.28 93.90 ± 5.35

CB 95.35 ± 3.03 94.22 ± 5.50 96.60 ± 2.26

AF 96.53 ± 1.48 96.80 ± 1.52 97.61 ± 1.32

IOFF 94.96 ± 2.42 96.35 ± 2.21 95.60 ± 2.81

256 and 256 convolutional filters. After each convolution step, ReLU operation
is applied. In training, we used ADAM optimizer with a learning rate 10−4 and
epoch size is selected as 100.

3 Results

We used 10 HCP subjects [13] as training subjects with dMRI scans obtained
from both 7T and 3T scanners. Another independent set of unseen 30 HCP sub-
jects (with data from both 3T and 7T) were used to evaluate the performance
of all the methods. 7T data had the following acquisition parameters: 1.05 mm
isotropic spatial resolution, two-shells (b = 1000, 2000) with 65 gradient direc-
tions on each shell; while 3T data had: 1.25 mm isotropic spatial resolution,
three-shells (b = 1000, 2000, 3000) with 90 gradient directions on each shell. In
this work, we learnt the mapping only for b = 1000 and b = 2000 shells from
3T to 7T. We compared our methods with another non-linear learning method:
Regression Forest (RF) method which was presented by [1] to improve DTI data
quality (RF-DTI). Note that, this method was not used in the context of data
harmonization, yet we found it relevant to compare our work with it. In this
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paper, we also introduce RF-RISH (Regression Forest (RF) with RISH features)
to provide a fair comparison between our RISH feature based and RF-DTI based
method. Using our methods, subject-specific mapping between 3T and 7T was
obtained and the final signal was estimated using Eq. 2.

We computed whole brain FA and MD to compare the learning performance
between the RISH features based methods and RF-DTI [1]. Root Mean Squared
Error (RMSE) on 30 test subjects was computed for DTI specific measures
of FA and MD as well non-model specific measure of generalized FA (GFA)
and the dMRI signal itself. RMSE was computed between our prediction and
the ground truth data that was acquired on 7T from the same set of subjects.
Average accuracy and precision values for estimation of FA, MD, GFA and DWI
signal are given in Table 1. In Fig. 3(a) top row, we show the estimated FA
results using our methods (Linear-RISH, RF-RISH and CNN-RISH) and RF-
DTI for b = 1000. In Fig. 3(a) bottom row, we show the error maps (RMSE)
in FA between the predicted data and the actual scanner acquired 7T data.
Figure 3(b) shows error maps in the raw dMRI signal, with most of the error
using CNN-RISH confined to the CSF regions of the brain. Even though FA
and MD are directly derived from DTI model, RISH features based non-linear
methods performed better when compared to RF-DTI. As seen in Table 1 and
Fig. 3, our deep CNN-RISH method gives the best performance, with lowest
error in several metrics (FA, GFA and dMRI signal error). Thus, our method is
tissue model-independent and directly reconstructs the dMRI signal, which can
then be used in further analysis.

In order to ensure that our deep CNN method does not change the fiber ori-
entation, we performed whole brain tractography using a multi-tensor unscented
Kalman filter (UKF) method [7]. Next, we use the White Matter Query Lan-
guage (WMQL) [17] to extract specific anatomical white matter bundles from
the whole brain tracts. Figure 4 depicts WMQL results for corticospinal tract
(CST) and cingulum bundle (CB). After extracting the tracts from the origi-
nal 3T and 7T, and the harmonized 7T-like data, we used the Bhattacharyya
overlap distance (B) to quantify the agreement between the tracts [10]: B =
1
3

(∫ √
Ph(x)P (x)dx +

∫ √
Ph(y)P (y)dy +

∫ √
Ph(z)P (z)dz

)
, where P (.) rep-

resents the ground truth probability distribution of the fiber bundle, Ph(.)
is the probability distribution of the tracts from the harmonized data and
x = (x, y, z) ∈ R

3 are the fiber coordinates. B is 1 for a perfect match between
two fiber bundles and 0 for no overlap at all. In Table 2, we provide the Bhat-
tacharyya overlap measure for: (i) the original 7T vs the original 3T; (ii) the
estimated 7T-like vs the original 7T; (iii) the estimated 7T-like vs the original
3T data. Due to the space limitations, we only show the results for CST, CB,
arcuate fasciculus (AF) and the inferior occipito-frontal fascicle (IOFF) tracts.
We observed very high overlap of 93–97% for all fiber bundles indicating that
fiber orientation is preserved by the harmonization algorithm.
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Fig. 3. (a) FA comparison between our methods (Linear-RISH, RF-RISH and CNN-
RISH) and RF-DTI for b = 1000 are shown in the top row. FA map of the original 7T
data is depicted in the rightmost figure. RMSE maps in FA for different methods as
well as the original 3T data itself (leftmost) are depicted in the bottom row. All results
are computed and shown for the same subject; (b) RMSE maps between DW volumes
estimated using our methods (Linear-RISH, RF-RISH and CNN-RISH) and the original
7T data for a single subject. ([·, ·]: the range of intensities chosen for visualization).

Fig. 4. Significant (>93%) overlap is seen in CST and CB extracted from the original
3T (blue) and 7T (magenta), and harmonized 7T-like (green) dMRI data.
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4 Conclusion

In this paper, we proposed a linear and a nonlinear machine learning method to
harmonize the raw dMRI data acquired on scanners with very different magnetic
field strengths (3T and 7T). We validated our algorithm on 30 test subjects, and
demonstrated the efficacy of using this technique to harmonize dMRI data from
vastly different scanners in a model-free manner. Even though FA and MD are
directly related DTI, both qualitative and quantitative results show that our
methods perform better or close (for linear regression) when compared to RF-
DTI. The tractography results also prove that our deep CNN method matches
the dMRI signal between scanners while preserving the fiber orientations. The
proposed method can also be useful to improve the quality and resolution of
dMRI data. As a first step, we have demonstrated and validated the utility of
this work in harmonizing data from healthy subjects while more validation needs
to be done on subjects with gross tissue pathology.
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