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Abstract. Improved outcome in patients with ischemic stroke is
achieved through acute diagnosis and early restoration of cerebral flow
in appropriate patients. Diffusion-weighted MR imaging (DWI) plays
a central role in these efforts by enabling rapid early localization and
quantification of ischemic lesions. Automated detection and quantifica-
tion can potentially accelerate diagnosis, improve treatment safety and
efficacy and reduce costs. However, the manual quantification of acute
ischemic stroke volumes for algorithm training is time consuming and
imprecise. We present YNet as a novel fully-automated deep learning
algorithm for detection and volumetric segmentation and quantification
of acute cerebral ischemic lesions from DWI. The algorithm is a semi-
supervised multi-tasking deep neural network architecture we developed
that enables the combination of both weak labels derived from radiology
report classification and manually delineated pixel level training data.
The model is trained on a very large dataset of 10000 studies, achieves
detection sensitivity 0.981, detection specificity 0.980 and segmentation
Dice score 0.623 on a heterogeneous test set.
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1 Introduction

Acute ischemic stroke remains a leading cause of death and disability. However,
a number of recent multicenter trials have demonstrated significantly improved
neurological outcomes when the latest generation of thrombectomy devices are
used to restore cerebral blood flow within 6 h of symptom onset [1,5]. Extension
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of the time window for successful treatment out to 24 h has been more recently
demonstrated [6]. In such trials, proper patient selection with various neuroimag-
ing modalities, including CT, catheter angiography, and MRI, has been essential
for treatment success. With MRI, diffusion-weighted imaging (DWI) sequences
provide sensitive detection and localization of even the tiniest ischemic brain
lesions within minutes of vessel occlusion. From DWTI images, the total amount
of ischemic tissue can also be measured. While critical for safe patient selection
and for prediction of long term disability, such volume measurements are chal-
lenging. Automated methods for DWI lesion detection and measurement have
great potential for improving stroke treatment by reducing the time necessary
to administer therapy to appropriately selected patients. Though several semi-
automated approaches have been proposed in the literature, including adaptive
thresholding [8], watershed [12] and fuzzy clustering [13], fully automated solu-
tions are preferable to reduce time-consuming and error-prone steps in the clin-
ical workflow. However, a key bottleneck in building fully-automated solutions
is the segmentation models require voxel-level image annotation of each image
which is expensive and time-consuming. For example, Chen et al. introduced a
fully-automated deep learning segmentation algorithm for DWT ischemic lesions
based on 2D convolutional neural networks (CNN) which achieved good results
of dice score of 0.67 and sensitivity of 0.94, but required training on 741 manu-
ally segmented DWI images. Binary classification of diagnostic radiology reports
for brain MRI studies as DWI-positive or DWI-negative can be used as a source
of weak image-level labels and are far easier to generate than detailed pixel-
level annotations. In this work, we introduce a semi-supervised multi-tasking
deep learning CNN model trained on explicit classification and segmentation
tasks. The model learns to segment and to classify from a heterogeneous set of
annotated and weakly labeled images.

2 Data

Data for this project was collected from Massachusetts General Hospital and
Brigham Women Hospital. All data were collected retrospectively. Ethical
approval was granted by the institutional review board. Data included MR stud-
ies and the official diagnostic reports.

2.1 Weak Labels

From a database containing all radiology reports over a ten year period (2007—
2017), parsing of the Impression section text of Brain MRI study reports was per-
formed to create a balanced set of 5000 negative studies and 5000 positive studies
for acute ischemia. Parsing methods included keyword and sentence matching
and creation of a simple text classifier based on N-grams and Support Vector
Machines (SVM). Initial classification results were manually validated and cor-
rected by a trained radiologist (B.B). Studies with keyword matches for terms
indicating the presence of post-surgical findings or brain tumor pathology were
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excluded to reduce the effect of confounding image patterns from non-ischemic
disease. The resultant scans were obtained from a variety of scanner manufactur-
ers, magnet strengths, acquisition parameters and patient demographics. Patient
age was limited to 20-80 years.

2.2 Manual Segmentation

Out of the 5000 positively labeled studies, 500 were manually segmented by
two trained radiologists (B.B., R.R.) using the software Osirix version 9.0, by
drawing contours of acute ischemic lesions on DWI and ADC series slices. In
total, 1423 slices were manually segmented. The average manual segmentation
time per volume was 10 min.

2.3 Imaging Data

The majority of ischemic lesion segmentation algorithms in the literature are
based on DWI [2,12,13]. In this study, in order to mitigate shine-through effect
from non-acute lesions, we incorporated both DWI and derived Apparent Diffu-
sion Coefficient (ADC), following clinical practice. DWI and ADC images were
acquired using 2D multi-slice MR acquisition modalities with variation in acqui-
sition parameters (number of pixels, number of slices, pixels size, slice thickness,
repetition time, echo time) related to different manufacturer platforms. Images
were re-sampled in three dimensions on a grid of 256 x 256 x 32 with resolu-
tion 1.2mm x 1.2mm x 9mm. To compensate for the large variation in image
intensity across studies, a normalization algorithm was applied independently to
DWI and ADC image intensities. The algorithm detects the peak corresponding
to white matter in the image histogram and scales the image to assign an average
pixel value of 1.0 in the white matter.

3 Model

We developed YNet, an extension of the UNet architecture [3,11], successfully
employed by other authors for semantic segmentation of MR images [9], for our
semi-supervised learning. The model operates on multichannel (DWI and ADC)
image data at full resolution (256 x 256 x 32 x 2).

3.1 Semi-Supervised Learning

Figure 1 shows the architecture of the proposed YNet. The network is composed
of three branches: encoding, decoding and classification. The encoding branch
is composed of a cascade of convolutional blocks, each comprising two convolu-
tional layers followed by max-pooling, batch normalization and activation. The
decoding branch is composed of deconvolutional blocks, each comprising an up-
sampling layer followed by two convolutional layers, batch normalization and
activation. The classification branch, connected to the output of the encoder, is
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Fig. 1. YNet semi-supervised learning architecture.

composed of two fully connected layers. The model loss is the sum of two terms:
the negative Bernoulli log-likelihood associated to the output of the classification
branch and the negative Dice score which measures the similarity of the output
of the decoder branch to the manual segmentation. The Dice score previously
used in [2,9] as segmentation score, was modified as follows:

2> myim + €
o ; (1)

> (@i +y)m+e
where z; is the output of the decoder at voxel i; y; is the manual segmentation

at voxel 4; € is a small number (set to 1.0 in experiments) for numerical stability;
and m € {0,1} is a binary mask variable that enables end-to-end training with

Dice(X,Y) =
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mixed image-level and pixel-level annotations. The variable is set to 1 for positive
manually segmented and negative cases, to 0 for positive non-segmented cases.
This has the effect of disabling gradient propagation in the decoder when the
pixels-level labeling is missing. From the perspective of image segmentation, the
image-level labels provide semi-supervision. From the perspective of classifica-
tion, the pixel-level labels act as a supervised focusing mechanism. A similar idea
is applied in [10] to the semantic annotation of natural images. We implemented
the model in Keras version 2.0 with TensorFlow back-end version 1.3.

4 Experiments and Results

The YNet model was compared with two baseline models: a convolutional neu-
ral network (CNN) for classification and a 3D UNet for segmentation. The CNN
model for classification consisted of N convolutional layers. Ly regularization,
dropout, and learning rates were explored through a distributed random search
for 20 epochs. Configurations that performed well were then trained until con-
vergence. After exploring a variety of architectures and hyperparameter config-
urations, the most performant model was selected based on the validation set
accuracy. It consisted of six convolutional layers beginning with 36 filters and
growing by 12 additional filters per layer. Test set sensitivity was observed to be
0.979 and specificity 0.958.

Experiments were performed using a 2D UNet to optimize the segmentation
architecture. In order to select the optimal size of the receptive field, a 2D UNet
with four encoding blocks and three decoding blocks was trained at three levels
of resolution on all manually segmented slices: 64 x 64 x 32, 128 x 128 x 32 and
256 x 256 x 32. The networks produced Dice coefficients of 0.527, 0.532, 0.561
respectively. The largest receptive field was selected and used in subsequent
experiments.

The effect of various pre-processing techniques on segmentation performance
was evaluated. Magnetic field inhomogeneity was corrected using the N4 Bias
field correction software [14] and all images were rigidly registered to a reference
DWI-ADC image pair. Bias field correction was found to degrade the segmenta-
tion performance. Image registration was found to slightly accelerate convergence
but did not produce any significant improvement in segmentation performance.
Bias field correction and image registration were therefore not used in subsequent
experiments. In experiments with 2D segmentation, perturbation of the image
intensity using random scale and offset was found to improve performance on the
validation set. In subsequent experiments, the dataset was augmented 5-folds by
multiplying the image intensity by A(1,0.2) and by adding A (0,0.2).

The final 3D Unet had a receptive field of 256 x 256 x 32 pixels with two
input channels (DWI and ADC), five encoder blocks and four decoder blocks.
Convolutional layers used 3 x 3 x 3 kernels and MaxPooling layers had pool size
of 2 x 2 x 2. Dropout of 0.2 was used in the bottom layers of the encoding and
decoding branches for regularization.
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The YNet model architecture was identical to the 3D UNet architecture,
with the addition of two dense layers for classification. The dense layers had size
262144 x 16 and 16 x 1 respectively. A dropout layer with dropout rate 0.5 was
placed between the two dense layers for regularization.

In experiments, it was found that the performance of both the 3D UNet and
the 3D YNet improved when pre-training the models in 2D. A 2D model with
the same architecture and parameters as the 3D UNet was first trained on the
set of all manually segmented 2D slices. The parameters were then transfered to
the 3D UNet and YNet models, as depicted in Fig. 2, by padding the 2D kernels
with random numbers generated according to the xavier initialization method
[4]. During 2D pre-training, batch size was set to 16 and during 3D training it
was reduced to 1 due to memory constraints. In order to compensate for the
ineffectiveness of the batch normalization modules with batch size 1, we used
SeLu activations, recently introduced in [7]. These were found to very effectively
accelerate convergence. The models were optimized using standard stochastic
gradient descent with learning rate fixed at 0.001 and momentum set to 0.9.
The data set was split in 80% training, 10% validation, 10% testing. The models
were trained in turn on an NVidia DGX-1 with 8X P100 GPUs (16 Gb RAM
per GPU), with whole model 8% replication (except for the CNN, which was
trained on 4 GPUs). The models were pre-trained for 20 epochs and trained
for 50 epochs. Training time was 4.6h for the UNet and 86h for the YNet.
Quantitative results are reported in Table 1. Examples of image segmentations
produced by the UNet and the YNet are reported in Fig. 3. The YNet determines
an increase of Dice score from 0.581 to 0.623 on the test set, and an improvement
in quality of the segmentations. The improvement is visible in particular in small
lesions and in the reduction of artifacts. The UNet outperformed the CNN in
classification, achieving sensitivity 0.981 and specificity 0.980.

256x256

256x256x32

3x3 kernel
3x3x3 kernel
random
initialization
i | ; (Gorot method) |
(1) train 2D model on stack (I1) train 3D model on multi-slice
of manually segmented slices images resampled in 3D

Fig. 2. 2D pre-training
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Table 1. Sensitivity and specificity acute ischemic stroke detection. Dice score acute
stroke core segmentation.

CNN | UNet | YNet
Sensitivity | 0.979 | / 0.981
Specificity | 0.958 | / 0.980
Dice / 0.581 | 0.623

Fig. 3. UNet and YNet comparison: the images represent DWI with the overlay of the
automated segmentations produced by the neural network. Top: 3D UNet. Bottom: 3D
YNet.

5 Discussion and Conclusion

In this paper, we have introduced a deep learning architecture to automatically
detect and segment acute ischemic stroke lesions on diffusion-weighted MRI to
address the challenges of stroke diagnosis and optimal selection of patients for
acute stroke therapy. The model is validated on a very large clinical dataset and
achieves state-of-the-art performance. To the best of our knowledge, our app-
roach to classify and segment a medical image from both pixel level annotations
and weak image level labels and using 3D contextual information is novel. By
using end-to-end multi-task learning, the model achieves high classification and
segmentation performance, learning to segment from weak labels and to classify
from manual annotations. Given that many problems in image interpretation
require detection and localization, we believe that the approach explored in
this paper can have wide applicability in medical image interpretation, enabling
machine learning at large scale with minimum annotation effort. In the future,
this method could be extended to account for multiple segmentation and classi-
fication labels.
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