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Abstract. Matching structural parcels across different subjects is an
open problem in neuroscience. Even when produced by the same tech-
nique, parcellations tend to differ in the number, shape, and spatial
localization of parcels across subjects. In this work, we propose a parcel
matching method based on Optimal Transport. We test its performance
by matching parcels of the Desikan atlas, parcels based on a functional
criteria and structural parcels. We compare our technique against three
other ways to match parcels which are based on the Euclidean distance,
the cosine similarity, and the Kullback-Leibler divergence. Our results
show that our method achieves the highest number of correct matches.

1 Introduction

Brain organization displays high variability across individuals and species.
Studying brain connectivity therefore faces the challenge of locating homoge-
neous regions while accounting for this variability. Different techniques have been
proposed to parcellate the brain based on its structural connectivity. However,
matching the resulting parcels across different subjects is still an open problem
in neuroscience. Even when produced by the same technique, parcellations tend
to differ in the number, shape, and spatial localization of parcels across subjects
[8]. Current theories hold that long-range structural connectivity, namely, extrin-
sic connectivity, is strongly related to brain function [14]. Therefore, being able
to match parcels with similar connectivity across subjects can help to under-
stand brain function while also enabling the comparisons of cortical areas across
different species [9].

Most of the current methods to match parcels across subjects are strongly
linked to the technique used to create them. For example, Moreno-Dominguez
et al. [11] seek correspondences between dendrograms created by means of Hier-
archical Clustering. Parisot et al. [13] impose the consistence of parcels across
subjects while creating the parcellation. In recent works Mars et al. propose to
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Fig. 1. From the cortico-cortical structural connectivity matrix of a subject, we can
estimate the connectivity fingerprints of each parcel in three different types of parcel-
lations. For each parcellation we compute the amount of correct matches (green lines)
that each matching technique produces.

use the Manhattan distance, cosine similarity [10] or the Kullback–Leibler (KL)
divergence [9] to compare and match connectivity fingerprints, successfully iden-
tifying common areas across humans and primates.

In this work, we propose to match parcels based on their extrinsic connectiv-
ity fingerprint using Optimal Transportation theory. Optimal Transport (OT) is
a technique that seeks the optimal way to transport mass between probability
distributions. While KL divergence computes the difference between two dis-
tributions, OT computes a matching between them. In particular, our method
adopts a discrete regularized version of Optimal Transport (OT), which has been
presented in Gayraud et al. [6] and Courty et al. [2] as a solution to the domain
adaptation problem.

We validate our method with four different experiments. In the first experi-
ment, we test the feasibility of our method by generating parcels with synthetic
connectivity fingerprints and matching them. In the second one, we show that
our technique is able to match parcels of the same atlas across subjects. We use
the anatomical atlas of Desikan [4] as its parcels have high spatial coherence and
consistent connectivity profiles across subjects [16]. Finally, we show the capacity
of our method to match parcels generated with the same criteria but have some
spatial cross-subject variability. We assess this for two different situations. In the
first one, we derive the parcels from functional activations [1]. We use responses
to motor and visual stimuli since they have been shown to be strongly related to
structural connectivity [12,15]. In the second one, we divide the Lateral Occipi-
tal Gyrus in 3 parcels using a structurally-based parcellation technique [5]. We
use the Lateral Occipital Gyrus since it has been shown to have a consistent
parcellation across subjects [5,17]. The outline of the last three experiments can
be seen in Fig. 1.

In each experiment, we compare our technique against three other ways to
match parcels based on the Euclidean distance; the cosine similarity; and the
Kullback-Leibler divergence. Our results on real data show that our method
based on OT always achieves the highest number of correct matches.
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2 Methods

Given two subjects with their respective parcellations, we compute their parcel
matching by considering one as the origin and the other one as target. More
formally, let Xa = {xa

i }Na
i=1, xa

i ∈ Ωa ⊂ R
n be an origin dataset where Na

denotes the number of parcels; xa
i is the extrinsic connectivity fingerprint of

parcel i; and n denotes its dimension. We wish to recover a matching between
Xa and a target dataset Xb = {xb

i}Nb
i=1, xb

i ∈ Ωb ⊂ R
n.

In this section, we start by formulating our regularized discrete OT-based
method and proceed by presenting three ways of computing this matching
that are based on the Euclidean distance; the cosine similarity; and the KL-
divergence.

2.1 Discrete Regularized Optimal Transport

Optimal Transport (OT) theory boils down to finding the optimal way to trans-
port or redistribute mass from one probability distribution to another with
respect to some cost function. In this work, since the datasets Xa and Xb are
discrete datasets, we use their empirical probability distributions and apply the
discrete formulation of OT [2,6] to solve the parcel matching problem. A sim-
plified example of how our method proceeds is presented in Fig. 2.

Assume that Xa and Xb follow probability distributions pa(xa) and pb(xb),
respectively. We suppose that Xa has undergone a transformation T : Ωa → Ωb,
such that pb(T(xa)) = pb(xb). We wish to recover T and use it to match the
parcels of Xa and Xb. Using discrete regularized OT we compute a transport
plan γ0 between these two probability distributions. This transport plan is a
doubly stochastic matrix which minimizes a certain transportation cost C over
the vectors of Xa and Xb. In other words, it defines the optimal exchange of mass
between the two probability distributions. We use γ0 to compute an estimation
T̂ by selecting the pairs of vectors, i.e., parcels that exchange the most mass.

Since pa(xa) and pb(xb) are not known, we use the corresponding empirical
distributions μa =

∑Na

i=1 pa
i δxa

i
and μb =

∑Nb

j=1 pb
jδxb

j
instead, where pa

i and pb
j

are the probability masses associated to each sample. However, given that the
dimension of our data depends on the number of vertices in the cortical mesh, the
curse of dimensionality makes the estimation of μa and μb intrinsically difficult.
We therefore simply assume a uniform probability distribution over all vectors,
pa

i = 1
Na and pb

j = 1
Nb . We compute the transport plan γ0 such that, if

B =
{
γ ∈ (R+)Na×Nb | γ1Nb

=
1

Na
1Na

, γT1Na
=

1
N b

1Nb

}
(1)

denotes the set of all doubly stochastic matrices whose marginals are the prob-
ability measures μa and μb, where 1N is an N -dimensional vector of ones, then
γ0 ∈ B is the output of the following minimization problem.

γ0 = arg min
γ∈B

〈γ,C〉F + λ
∑

i,j

γ(i, j) log γ(i, j) (2)
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(a) Original & target datasets (b) Computed transport plan (c) Matching

Fig. 2. A 2-d example of using OT to compute the matching between two different
datasets. On the left we show the original and target datasets. The real matchings
are displayed as green dashed edges. In the middle, the edge densities represent the
values of the computed coupling γ0, which denote the amount of mass that is exchanged
between vectors xa

i and xb
j . On the right, we see the recovered matching. The blue edges

represent the correct matchings, while the red dotted edges represent the incorrect ones.

The matrix C, where C(i, j) = ‖xa
i − xb

j‖22, represents the cost of moving proba-
bility mass from location xa

j to location xb
i , in terms of their squared Euclidean

distance. The rightmost term is a regularization term based on the negative
entropy of γ allows us to solve this optimization problem using the Sinkhorn-
Knopp algorithm [3] which improves the computation time.

Matrix γ0 contains information about the exchange of probability mass
between the vectors of Xa and Xb. By construction, this exchange depends
on the selected cost function. The choice of the squared euclidean distance is
motivated both by the fact that it renders the optimization problem convex
and because it will allow the parcels to be matched according to the vicinity of
their feature vectors. Hence, the origin feature vectors will distribute their corre-
sponding probability mass to the target feature vectors that are closest to them.
Consequently, we define T̂ : Ωa → Ωb as T̂(xa

i ) = xb
ĵ

where ĵ = arg maxj γ0(i, j).

Therefore, i will be matched to the parcel ĵ that it sent the most mass to.

2.2 Matching Parcels Based on Dissimilarity Between Features

Let d(xa
i , xb

j) be some dissimilarity measure between the elements of Xa and Xb.
Then, we say that parcel i matches parcel j if arg mink d(xa

i , xb
k) = j. We com-

pare three dissimilarity measures against our method. First, we use the Euclidean
distance, which can be interpreted as matching the parcel i to the parcel j whose
feature vector xb

j is the closest to xa
i . Then, we use the cosine similarity, which

is minimized when two feature vectors are colinear. Lastly, we use the Kullback-
Leibler divergence, which measures the difference between two probability dis-
tributions in terms of their relative entropy. Note that we need to convert our
vectors into probability vectors in order to evaluate dKL.
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3 Experiments and Results

3.1 Data and Preprocessing

For this work we randomly selected 20 subjects from the S500 group of the
Human Connectome Project (HCP), all preprocessed with the HCP minimum
pipeline [7]. Fiber orientation distributions functions where computed using
spherical constrained deconvolution with a spherical harmonic order of 8. Prob-
abilistic tractography was then performed using 1000 seeds per vertex of the
cortical mesh provided with the HCP data. For each subject, we computed a
connectivity matrix by counting the number of streamlines that connect each
pair of vertices of the cortical mesh. Each row in the matrix is a vertex con-
nectivity vector, representing the probability that a connection exists between a
surface vertex and the rest of the surface’s vertices.

Given a whole brain cortical parcellation, we compute the connectivity fin-
gerprint of each parcel by averaging the connectivity fingerprint of its vertices.
Because the mesh’s vertices are coregistered across subjects [7], we are able to
compare the connectivity fingerprints across subjects. The criterion to compute
the parcel matching between two subjects is the similarity between connectivity
fingerprints. That is, we match two parcels if they are connected to the rest of
the brain in a similar manner. Due to the distance bias that occurs in tractog-
raphy, a parcel tends to be highly connected to the vertices that compose it. To
prevent the matching to be influenced by this bias, we disconnect each parcel
from its own vertices.

3.2 Matching Parcels

In this section we evaluate the performance of our method by comparing it
to the methods presented in Sect. 2.2. For each experiment we compute parcel
matchings between all possible pairs of connectivity matrices. To quantify the
result of each technique, we compute the accuracy in terms of percentage of
correctly matched parcels per pairwise matching.

Matching Parcels with Synthetic Fingerprints. In this first experiment,
we test the feasibility of our method by generating parcels with synthetic con-
nectivity fingerprints and matching them. We start by generating a connectivity
matrix M using probabilistic Constrained Spherical Deconvolution based trac-
tography to use as ground truth. Our ground truth matrix is a square matrix
that represents the connectivity between the 64 parcels of the Desikan atlas in
one subject of the HCP dataset. Each coefficient M(i, j) = θij is the parameter
of a random variable that follows a Bernoulli distribution Xij B(θij). This vari-
able Xij represents the probability of a connection existing between the parcels
i and j. Using M , we generate 20 synthetic matrices in such a way that the coef-
ficients of each synthetic connectivity matrix are random variables that follow
a binomial distribution X(i, j) ∼ B(p = M(i, j), n). By doing this we simulate
doing tractography for various values of the number n of particles. Figure 3a
shows the performance of each method as a function of n.
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(a) Synthetic data (b) Real data

Fig. 3. Proportion of parcels correctly matched by each method (see Sect. 2.2) when
matching: (a) synthetic connectivity fingerprints and (b) connectivity fingerprints of
a cortical parcellation, for three different parcellations (as described in Sect. 3.2). OT
always performs significantly better.

Matching Parcels of the Desikan Atlas. For each subject, we compute
the connectivity fingerprint of each parcel in their Desikan atlas as explained in
Sect. 3.1. When matching parcels across subjects, Fig. 3b shows that on average
OT achieves an accuracy of 98%±2%, followed by cosine similarity (94%±3%),
KL divergence (87% ± 4%), and finally Euclidean distance (77% ± 11%).

Matching Parcels Created Using Functional criteria. Each subject in the
HCP dataset possesses z-score maps representing responses to different stimuli
obtained with functional MRI (fMRI) [1]. We derive parcels for each subject from
the responses to motor (hand, foot and tongue movement) and visual stimuli
(faces vs shape recognition). We do so by keeping only the vertices whose z-score
is in the top 35%. Figure 3b shows that OT performs best with an average of
98%± 6%. The cosine similarity, KL divergence, and Euclidean distance achieve
average accuracies of 97% ± 6%, 92% ± 10%, and 90% ± 13% respectively.

Matching Parcels Created Using Structural criteria. For each subject, we
first mask their Lateral Occipital Gyrus using the Desikan atlas. Then, we divide
it into 3 parcels using the structural based parcellation technique of Gallardo et
al. [5]. Once more, we can see on Fig. 3b that optimal transport has the highest
average accuracy, equal to 92% ± 16%. It is followed by the cosine similarity,
the KL divergence, and the Euclidean distance, whose average accuracies equal
85% ± 17%, 84% ± 17%, and 75% ± 17%
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4 Discussion

In this work we proposed a method to match parcels across subjects based on
the connectivity fingerprint of a parcel.

We tested our method with four different experiments. In the first experiment
our technique correctly matched connectivity fingerprints created in a synthetic
way. Specifically, each entry in a fingerprint was sampled from a Binomial dis-
tribution, whose parameter was chosen as the corresponding value of a ground
truth connectivity matrix. This can be thought as a simulation of the process of
tracking in tractography with different number of streamlines.

Our second experiment shows that we can correctly match parcels of the
Desikan atlas across subjects with a 98% of correct matches. The parcels of the
Desikan atlas are known to have high spatial coherence and consistent connectiv-
ity profiles across subjects [16]. We therefore use this experiment as a reference
point to benchmark our technique. The last two experiments show that our tech-
nique can match parcels generated with a same criteria, even when they have
some spatial variability across-subjects. The first experiment uses parcels created
from the functional response to specific motor and visual stimuli, known to be
strongly linked to functional connectivity [12,15]. The second one, parcels cre-
ated from the structural parcellation of the Lateral Occipital Gyrus, a structure
documented to have a consistent structural division [5,17].

It’s important to notice that our technique achieved more than a 90% of
correct matches in every experiment with real data. Given that we used 20
subjects, this represents a total of 20 × 19 = 380 cross-subject matches. In
the case of the Desikan atlas, which possesses 64 parcels, this translates into a
total of 24320 matches, from which 98% where correctly matched. Furthermore,
when tested with a paired t-test to compare the number of correct matches, our
method always performs significantly better than the other three (p < 10−256).

5 Conclusion

Matching structural parcels across different subjects is an open problem in neu-
roscience. In this work, we proposed a novel parcel matching method based on
Optimal Transport. We tested its performance with four different experiments,
always obtaining the highest number of correctly matched parcels, which is an
improvement over the results of the currently used techniques. Our technique
could have major implications in the study of brain connectivity and its rela-
tionship with brain function, allowing for the location of parcels with similar
connectivity but not high spatial coherence. Also, it could help to understand
the link between different brain atlases, and improve the comparisons of cortical
areas between higher primates.
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