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Abstract. Registration of partial-view 3D US volumes with MRI data
is influenced by initialization. The standard of practice is using extrinsic
or intrinsic landmarks, which can be very tedious to obtain. To overcome
the limitations of registration initialization, we present a novel approach
that is based on Euclidean distance maps derived from easily obtainable
coarse segmentations. We evaluate our approach on a publicly available
brain tumor dataset (RESECT) and show that it is robust regarding min-
imal to no overlap of target area and varying initial position. We demon-
strate that our method provides initializations that greatly increase the
capture range of state-of-the-art nonlinear registration algorithms.

1 Introduction

Image registration, i.e. the process of establishing a common reference frame for
two or more image data sets, is an important step for a number of medical image
computing tasks and computer aided medical procedures. As noted by Viergever
et al. [1] in their recent review article on medical image registration, intensity-
based approaches are now forming the basis for the vast majority of registration
methods, and research in this field focuses almost exclusively on nonlinear image
registration. However, initialization plays a crucial role in convergence of such
intensity-based and nonlinear methods. In case of mono- or multi-modal tomo-
graphic registration tasks, such a initialization might be obtained based on the
information stored in the header of the respective datasets. The situation is
entirely different for registering 3D ultrasound (US) data, as it lacks a canonical
orientation. Thus, the registration task is particularly challenging when a com-
mon reference frame for 3D US data and Magnetic Resonance Imaging (MRI)
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Fig. 1. Limited overlap in registration. To initialize registration, a sufficient over-
lap of images is required. In case of limited overlap landmark selection is challenging.
Target Area Overlap is defined as pixels where Target Area and US volume are super-
imposed (blue), Image Overlap is the part where MRI and US are superimposed before
initialization (green + blue).

data has to be established, because US scans usually depict only a substantially
reduced portion of the anatomy. This is in strong contrast to the capture range of
state-of-the-art registration methods, requiring an initial error not greater than
15 mm, as reported recently [2].

Thus, the application of such nonlinear or local registration methods requires
a sufficiently close global initialization. If external fiducials are not available or
feasible, such an initialization is obtained via the selection of 3D landmarks
in common clinical practice. In view of the aforementioned observations by
Viergever et al. [1], we argue that the problem of global initialization has
received too little attention so far – particularly for the targeted application
of 3D US to MRI registration with limited overlap (see Fig. 1). Although the
process of defining a single landmark requires little user interaction (1 click), it
depends on profound geometrical understanding of the targeted anatomy as well
as the modality-specific appearance. Particularly in case of 3D US, this process
puts a high mental load on the observer, as visual inspection of three dimen-
sional images is difficult due to the lack of predefined orientations as well as
the limited volumetric coverage of the anatomy. While a high precision can be
achieved in theory [3], it is tedious and time consuming. In practice, this often
results in impaired accuracies and high inter-observer variability due to the lim-
ited time in daily routine. Moreover, many works show that the learning curve
can be steep when evaluating 3D US, even if the rater had previous training in
2D US [4]. Contrary to identifying landmarks in 3D, we argue that obtaining
coarse segmentations and using them for global initialization is a much more
convenient alternative. The reason is that they can be obtained either with
state-of-the-art automatic segmentation techniques, or sophisticated slice-wise
and semi-automatic methods. Furthermore, experts are not required to perform
a mental mapping of multiple 3D data sets with partially limited field of view to
precisely identify specific and corresponding anatomical landmarks in the data.

We thus propose a novel initialization procedure based on segmentation-
derived distance maps. We validate this approach on the publicly available REt-
roSpective Evaluation of Cerebral Tumors (RESECT) dataset [3] and compare
it to the global initialization based on landmarks.
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2 Discussion of Related Work

For the nonlinear, deformable registration of 3D US and MRI data, several state-
of-the-art methods are available. They all have in common that initial conditions
are stringent in terms of target registration error: for instance, about 15 mm are
reported by Fürst et al. [2] and below 10 mm are reported by Coupé et al. [5].
In order to obtain an initialization of sufficient quality, three possible methods
exist: Usage of external tracking data, landmarks identified in the image data
and registration of geometrical entities, e.g. rigid registration of segmentations.
If external tracking is not available, such as for retrospective studies, only the
latter two strategies are available. From a clinical point of view, landmark-based
initialization appears to be the more widely-used approach, but it requires a suf-
ficient geometrical understanding of the target anatomy and employed imaging
modalities as mentioned before. Reports of inter-observer variation of landmark
selection range from 0.33 ± 0.08mm [3] up to 1.6mm [6] even in case of clearly
discernible landmarks. As we focus on situations where tracking data is not
available, we regard landmark-based initialization as the baseline approach for
evaluation, where the aforementioned studies have been used to define a realistic
experiment setup, c.f. Sect. 4.

Segmentation-based registration initialization has been studied in context of
prostate fusion biopsy [7], where trans-rectal US has to be registered to MRI
data. Both this example and the situation studied in this work (see Fig. 1) are
challenging in terms of limited view of the US volume and the target organ being
highly symmetrical, where the global registration of even perfect segmentations
would suffer from many ambiguities.

As a consequence, the initialization problem requires further regularization,
for which we employ distance transforms which have been shown to be very
useful for correspondence estimation [7–9]. Together with an adaptive gradient-
based optimization strategy, c.f. Sect. 3, we thus are able to satisfy initialization
conditions for state-of-the-art deformable registration methods, even in case of
very limited views of the US data and coarse semi-automatic US segmentations.

3 Methods

In this section, we derive a novel initialization procedure that only requires low-
resolution coarse segmentations to initialize multi-modal deformable 3D US to
MRI registration methods. These segmentations can be easily obtained via coarse
annotations or any segmentation method. From these label maps, multi-class
distance maps are computed, which are registered simultaneously by optimizing
our proposed similarity measure via a gradient-based optimization strategy.

3.1 Coarse Segmentation

Let Vf : Ωf → R denote the fixed and Vm : Ωm → R the moving volumes
defined on their respective domains Ωf , Ωm ⊂ R

3. The first step of our method
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comprises the creation of N coarse segmentations for both Vf and Vm, i.e. we
assume two, not necessarily disjoint and complete, partitions of Ωf and Ωm:

N⋃

�=1

Ωf,� ⊂ Ωf and
N⋃

�=1

Ωm,� ⊂ Ωm. (1)

The choice of the segmentation algorithm itself depends on targeted anatomy and
specific application, but can be automated in most cases. In Sect. 4 we evaluate
our approach for the application of intra-operative brain imaging, where the US
volume takes the role of Vf and the MRI volume takes the role of Vm.

3.2 Initialization Procedure

Registering the two sets of label masks obtained via segmentation could be
formulated as a (pseudo-)mono-modal registration problem for which plenty of
classical intensity-based registration techniques are available. However, this app-
roach would suffer from the following issues: Firstly, computing the similarity of
label maps containing all labels encoded by numerical values would bare the pos-
sibility of trading label errors in an unfavorable way: two erroneously registered
voxels with a label distance of one would yield the same error as one erroneously
registered voxel with label distance two. Secondly, registering label maps with
bad initialization would suffer from low capture range as homogeneous label
regions (particularly in case of the background label) would not yield meaning-
ful information for optimization. In order to overcome these two problems, we
propose a similarity measure which computes label-specific distances (taking into
account the first problem) and employs distance maps to increase the capture
range (solving the latter issue). We chose distance maps due to their suitability
for correspondence estimation, see [8,9] for an example. Therefore, a Euclidean
distance transform φ is applied to each of the N classes individually and the
resulting distance maps are denoted by

φf,� = φ(χ(Ωf,�)) and φm,� = φ(χ(Ωm,�)), (2)

where χ denotes the characteristic function applied to the respective set. This
allows us to formulate the initialization task as a minimization problem

min
T∈SE(3)

N∑

�=1

∫

Ωf

|(φm,� ◦ T )(x) − φf,�(x)|p dx, (3)

where p = 1, 2 and T ∈ SE(3) denotes the rigid transformation. As Eq. (3) is dif-
ferentiable, gradient-based optimization techniques can be applied1. In order to
avoid parameter updates from becoming too large and yielding unstable behav-
ior, we employ the following modified gradient descent scheme:

pi+1 = pi − τsign(δi)min{|δi|, pmax}, (4)
1 In case of p = 1 a differentiable relaxation can be found.
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Fig. 2. Volumes and label map with (1) −80 mm offset in x direction, −0.1 rad
rotation around α and β for the MRI (2) after initialization with our method and (3)
ground truth provided by RESECT (4) distance map for surface (5) and foreground
label.

where pi denotes the optimized rotation angle or translation parameter and
δi the partial derivative of Eq. (3) w.r.t. p at iteration step i. Furthermore,
τ > 0 is a positive step size parameter and pmax > 0 regulates the maximum
parameter update per iteration. This way, unstable behavior can be avoided by
restricting the maximum parameter update to τpmax (measured in radians or
mm, respectively). For |δi| < pmax, however, the update scheme corresponds to
a regular gradient descent optimization.

The distance maps not only ensure a large capture range, but also cause the
cost function in Eq. (3) to enjoy favorable properties, as they a more regular than
the piecewise constant label maps. Moreover, from an implementation point of
view, it is advisable to employ a foreground mask ΩF to restrict the computation
of Eq. (3) to the target domain ΩF ∩ Ωf .

4 Experiments and Results

We evaluate our proposed initialization method on the example of the publicly
available RESECT dataset [3]. It is comprised of imaging data for 23 patients
with low-grade gliomas, containing co-registered 3T Gadolinium-enhanced T1w
and T2-FLAIR MRI, as well as B-mode ultrasound sweeps from before, during
and after tumor resection, reconstructed into 3D volumes. Retrospectively, up to
17 high accuracy anatomical landmarks were annotated across all three regis-
tered US sweeps and between US and MRI volumes for 22 patients. Only these
patients are included in our evaluation. For easier and faster computation, we
downsample all US volumes to match the MRI isotropic resolution of 1mm in
3D Slicer [10].2 [10]. We mask the foreground in ultrasound and MRI volumes.

With regard to the coarse registration, the idea is to provide clearly distin-
guishable and salient labels in both MRI and US, focusing on unique features
which are partly visible from any angle the US transducer could be positioned at

2 https://www.slicer.org/.

https://www.slicer.org/
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(see Fig. 2). For brain imaging, included classes are for example (lateral) ventri-
cles, longitudinal fissure and sulci, such as the prominent central and precentral
sulcus. In other applications, features such as vessel trees, bones, or fasciae could
be considered for coarse segmentations. Due to the penetration depth of the
ultrasound in the RESECT dataset, we employ superficial structures, namely
sulci, cerebellar tentorium and longitudinal fissure. Skull stripping and gray-
white matter segmentations are automatically performed in FreeSurfer3 [11],
yielding labels in all MRI datasets that satisfy the characteristics defined above.
For creating the ultrasound label map, we choose the semi-automatic random
walk approach [12], where only few pre-labeled pixels are needed. From the
extracted labels, a multi-channel distance map (here, 2 channels: 1 = foreground,
2 = surface) is created for both modalities respectively. The proposed metric (see
Eq. 3) is estimated and minimized with gradient descent for the distance maps
to find the optimal transformation matrix T . We set the step size τ to 0.5, pmax

to 0.004 rad, and 0.5 mm, keeping updates per step minimal.

4.1 Evaluation

In view of providing a global initialization for following local multi-modal regis-
tration, we evaluate the robustness of the proposed initialization, and compare
it to manual landmark-annotation as the de-facto standard in practice.

As a standard error metric for any registration method, the quality of the
initialization is evaluated by means of the mean target registration error [13]
(TREmean), computed on all landmarks L provided by the RESECT dataset.

We consider initialization to be a success if the position is within the capture
range of state-of-the-art (deformable) registration methods, otherwise we score
it as a failure. With respect to application in neurosurgery, automatic US–MRI
registration using the LC2 metric has a capture range of 15 mm [2]. Thus we
define the following quality criteria: If TREmean ≤ 15mm the initialization is
considered acceptable, 10–15 mm good and ≤ 5mm very good.

Robustness. In order to test the robustness with regard to target area overlap
and image overlap (see Fig. 1) we conduct convergence tests for increasing trans-
lation in x,y,z direction of up to ±200mm, as well as rotation around Euler angles
α, β, γ of up to ±0.3 rad. In total, this results in 2244 conducted initializations,
of which 24.96% are very good, 32.62% good, 26.75% acceptable and 15.64%
fail. All of the failed cases have below 10% overlap with the target area. Further-
more, all cases with image overlap over 30% converge with TREmean ≤ 15mm,
showing the robustness of the initialization. Of these, 25.48% are considered very
good, 40.61% good and 33.91% acceptable results. Even 24.94% of cases with
no initial overlap of MRI and US converge with very good results, 19.82% with
good, 15.83% with acceptable.

Comparison to Standard in Practice. As discussed in Sect. 2, the widely
used practice is to initialize volumes with non-overlapping positions by manual

3 http://surfer.nmr.mgh.harvard.edu/fswiki/.

http://surfer.nmr.mgh.harvard.edu/fswiki/
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Fig. 3. Robustness test for decreasing overlap percentage. These barplots show
the fraction of experiments that fall into each quality measure category (y − axis)
considering the percentage of overlap (x − axis) for image overlap (left) and target
area overlap right image (right).
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Fig. 4. Comparison to manual landmark selection. Shown are errors for all
patient TREs for initialization with four random landmarks selected from all avail-
able landmark pairs disturbed with Gaussian (σ = 1.5 mm) noise (left) in comparison
to errors for our initialization (right). Circles mark the TRE given by RESECT

selection of landmarks. We simulate this behaviour by randomly choosing 4
landmarks given by the dataset and disturbing them with Gaussian noise with
σ = 1.5mm, since this is a commonly reported inter-observer variation (see
Sect. 2). For each patient this is repeated 10,000 times and the TREmean is
calculated on all ground truth landmarks. Results are visualized in Fig. 4 on the
left side. For comparison, on the right side, we show the distribution of TREmean

for our conducted initialization test.

5 Discussion and Conclusion

Despite the fact that our results partially show outliers in terms of initialization
accuracy, especially the comparison to manual landmark registration, reflects
the potentially high inter-operator variability in initialization performance. In
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particular for challenging anatomies, landmark-based registration is demanding
for non-experts, because even finding a sufficient number of landmark pairs is
often difficult. In view of applications in practice, it should be noted that many
experts are not trained in ultrasound imaging, and thus finding appropriate
features can be unclear, also due to quality of US in 3D data. Even for placing
landmarks in MRI high inter-observer variation has been reported [14].

Furthermore, the presented initialization is robust with respect to both the
target area overlap, as well as the specific image overlap, cf. Fig. 3. This can be
accounted to the specific choice of distance maps in combination with coarse
features, providing anatomical context as well as coverage even when the actual
volumes do not overlap. We hope that the proposed method can lead to a sim-
plified clinical routine and more robust results in 3D image registration.
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