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Abstract. Dense correspondence between Cone-Beam CT (CBCT)
images is desirable in clinical orthodontics for both intra-patient treat-
ment evaluation and inter-patient statistical shape modeling and attribute
transfer. Conventional 3D deformable image registration relies on time-
consuming iterative optimization for correspondences. The recent forest-
based correspondence methods often require large offline training costs
and a separate regularization in the post-processing. In this work, we pro-
pose an efficient volume functional map for dense and consistent corre-
spondence between CBCT images. We design a group of volume functions
specifically for CBCT images and construct a reduced functional space
on supervoxels. The low-dimensional map between the limited spectral
bases determines the dense supervoxel-wise correspondence in an unsuper-
vised way. Further, we perform consistent functional mapping in a collec-
tion of volume images to handle ambiguous correspondences of craniofa-
cial structures, e.g., those due to the intercuspation. A subset of orthonor-
mal volume functional maps is optimized on a Stiefel manifold simultane-
ously, which determines the cycle-consistent pairwise functional maps in
the volume collection. Benefits of the proposed volume functional maps
have been illustrated in label propagation and segmentation transfer with
improved performance over conventional methods.

1 Introduction

Malocclusion has a high prevalence and causes aesthetic and functional problems
in a large population. Cone-Beam CT (CBCT) images are widely used in clinical
orthodontics to provide joint 3D geometries of the teeth, mandible, and maxilla
to facilitate accurate malocclusion diagnoses and treatment evaluations. Efficient
dense correspondence between CBCT images is desirable in several scenarios,
including measuring shape variations due to treatments and growth [8], label
propagation [5], and statistical craniofacial shape modeling [6].
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The conventional 3D deformable registration methods, such as B-spline and
Demons based registrations [11], solve the dense displacement field and corre-
spondence under a time-consuming large-scale optimization for the craniofacial
CBCT images. The importance sampling is helpful to accelerate the deformable
registration by reducing the parameter space with efficient Jacobian estimation
of similarity metrics [2]. However, the registration of the reduced subset also
relies on the online iterative optimization. The random forest realizes efficient
online dense correspondences between 3D surface meshes [10] and volume images
[5,9]. Aside from the supervised classification random forest learned from a large
set of labeled 3D meshes [10] or pseudo labeling obtained by supervoxel decom-
positions [5], the unsupervised clustering random forest realizes the self-learning
of data distribution and affinity estimation without prior labeling [9]. However,
the random forest built on independent data points could not guarantee the
spatial consistency. A separate regularization scheme is required for smooth cor-
respondences [9,10]. Recently the spectral methods using the Laplace Beltrami
operator have gained popularity for functional mapping [7,14], co-segmentation
[12], and analysis of anatomical structure [6] on surfaces and images. The func-
tional map has a high efficiency by performing spectral mapping in a reduced
functional space. However, the previous functional maps only handle 2D mani-
folds including images [12] and 3D surfaces [6,7].

Fig. 1. Flowchart of our system.

In this paper, we propose a novel volume functional map for establishing
supervoxel-wise correspondences between CBCT images (see Fig. 1). The pro-
posed method extends the existing functional map approach from a 2D manifold,
including the 2D image and 3D surface, to the 3D volume image. We design a
group of volume functions, including appearances, contexts, geodesics, and label
maps on supervoxel specifically for consistent correspondences between CBCT
images. The spectral decomposition of the graph Laplacian produces harmon-
ics bases of each volume image to span a linear volume functional space. The
scalar-valued functions of both features and attributes over supervoxels can be
reconstructed from a reduced set of functional bases. The dense supervoxel-wise
correspondence is realized by finding a spectral transformation matrix between
reduced functional spaces. The functional map is optimized by aligning the vol-
ume functions in an unsupervised way. Furthermore, in order to reduce corre-
spondence ambiguities of craniofacial structures, e.g., the separation of upper
and lower dentitions due to intercuspation, we exploit the cycle consistency
constraints by introducing a latent functional space to a volume collection.
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The pairwise orthonormal functional maps in the volume collection are opti-
mized simultaneously on a Stiefel manifold, which meet the invertibility and
transitivity requirements. The volume functional map realizes online label prop-
agation and attribute transfer between volume images by the linear algebra with
less computational complexity than conventional methods.

2 Methods

The input is a collection of clinically captured craniofacial CBCT images
V = {V1, . . . , VN}. The goal is to build dense supervoxel-wise correspondences
between volume images. Without loss of generality, we decompose each volume
image into supervoxels. A volume image is represented by a graph G = (S, E) over
the supervoxels S = {si|i = 1, . . . , M}. E denotes the edges connecting adjacent
supervoxels, which are weighted according to the affinity of adjacent supervoxels.
In the unsupervised setting, the supervoxel-wise mapping Pij ∈ R

M×M between
image Vi and Vj is solved based on the alignment of multi-channel features. The
system also allows a user to label a small set of landmarks or region correspon-
dences in a semi-supervised setting. With this setup, the goal is to estimate a
permutation matrix Pij of all supervoxels regarding CBCT images Vi and Vj .
Volume Functions. In our system, both features and attributes of supervoxels
are represented by real-valued functions. Denote function f : S → R to map a
supervoxel s to a real value g(s) ∈ R. There are four types of functions regarding
the supervoxel appearance, context, geodesic distance, and label maps. The first
three types are continuous real-valued functions, whereas the last one is a binary
function. The appearance functions of supervoxels are composed of the normal-
ized histograms of the original intensity and intensity gradients in x, y, and z
directions. The context functions are composed of appearance differences of one
supervoxel to those in a predefined contextual pattern [9]. The geodesic dis-
tance functions are defined by the sorted distance vector κ(di′,j′ |j′ = 1, . . . , M∗)
between supervoxel si′ to the rest supervoxels on the weighted graph G, where
di′,j′ is the shortest graph distance between supervoxel si′ and sj′ . κ is a cubic-
spline fitting and resampling operator on the sorted distance vector. In our sys-
tem, we only compute geodesic vectors of M∗ bony supervoxels for the com-
putational efficiency. The label maps defined by a user are only used in the
semi-supervised setting, where the indicator function g(s) = 1 for corresponding
landmarks or regions, and g(s) = 0 otherwise. Let Gi denote all volume functions
over supervoxels of image Vi. The functions Gi spans a linear space in R

M .
Reduced Volume Functional Space. The Laplace-Beltrami operator on a
manifold is defined as the divergence of the gradient, Δg = div∇g. The eigen-
decomposition, Δφ = λφ, results in harmonic bases of the functional space
with frequencies λ. On the discrete supervoxel decomposed volume image, the
graph Laplace is used to approximate the Laplace Beltrami operator. Let W
denote the weighted adjacency matrix of supervoxel graph G, L = D−1(D−W ),
where Dii =

∑
j Wij . The eigendecomposition of L results in eigenvectors
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Φ = (φ1, . . . , φM ) as the harmonics bases and eigenvalues (λ1, . . . , λM ) as har-
monics frequencies. The eigenvectors are sorted according to the harmonic fre-
quencies, and the first K eigenvectors are used to represent the reduced func-
tional space. K is set at 75 in our experiments. Eight eigenvectors related to a
volume image are illustrated in Fig. 2(a). The volume function is represented as
a linear combination of eigenvectors, g = Φg, where g ∈ R

K . The reduced bases
Φ∗ ∈ R

M×K .

2.1 Volume Functional Map

Given a volume image pair (Vi, Vj), and a volume function g(i) = Φ(i)g(i) ∈ Gi,
the goal of volume functional mapping is to transfer the K-dimensional vector
g(i) to the functional space of image Vj , and reconstruct the volume function
g(j) ∈ G

(j). Given H corresponding functions Gi ∈ R
M×H and Gj ∈ R

M×H on
image Vi and Vj , the corresponding supervoxels between volume images should
have similar functional values. The objective function E = ‖Gi − PGj‖2F , where
P is the unknown permutation matrix indicating the dense supervoxel corre-
spondence between Vi and Vj . Instead of the supervoxel-wise correspondence, we
handle the low-dimensional functional map Cij between the reduced functional
spaces. The functional map Cij = Φ(i)−1PijΦ

(j) [6,7]. The transferred function
g(j) = Φ(j)Cijg

(i). The functional map is viewed as a spectral transformation of
the reduced functional space Φ(i) and Φ(j), in which the transformation matrix
accounts for the sign fliping and interchanging of eigenvectors between volume
images. It is straightforward that the functional map between image Vi and Vj

should transform the feature function g(i) ∈ Gi to the feature function g(j) ∈ Gj .
The functional map is optimized by minimizing feature alignment errors.

E(Cij) = ‖Cijg(i) − g(j)‖2F + γ‖ΘjCij − CijΘi‖2F , (1)

where ‖ · ‖F is the Frobenius norm. g ∈ R
K×H denotes the harmonic weight

matrix in the reduced functional space. The feature space of image Vi is aligned
to that of image Vj by minimizing the first term. The second term is the oper-
ator commutativity constraints. Θ is a low rank approximation of the Graph
Lapidarian matrix. The constant γ is used to balance the feature alignment and
the commutativity constraint, and set at 1 in our experiments. We use the linear
least square to solve Cij . Given functional map Cij , the dense correspondence
matrix P ∗

ij = Φ(i)CijΦ
(j)−1. Note that the matrix P ∗

ij is not a hard permutation
between image Vi and Vj , since the entries record the probability of supervoxel
pair (si, sj) being a counterpart to each other. The permutation matrix Pij is
derived from P ∗

ij by using the column normalization and the NN scheme [7].

Consistency Regularization. When given additional images, cycle-consistent
functional maps in an image collection are helpful to improve the mapping accu-
racies over the pairwise functional maps [12,14]. In our system, we utilize the
consistency regularization to reduce the mapping ambiguity especially for the
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segmentation transfer of the mandible and maxilla. We follow the map decom-
position [12], where the functional maps, Ci,j = cj ′ci, are determined by a
reduced mapping set {c1, . . . , cM}. ci can be viewed as the functional map from
reduced functional space of Vi to a latent functional space. The decomposition
of Cij enforces the 3-cycle consistency of the functional maps in a volume collec-
tion. We further require the functional map ci, 1 ≤ i ≤ M, be an orthonormal
matrix in the Stiefel manifold. Thus, all the functional maps are orthonormal,
and C

′
ij = C−1

ij . The functional maps satisfies the invertibility and transitiv-
ity constraints, where Cij = C−1

ji and CjkCij = Cik. The objective function is
rewritten as

E(c) =
∑

Vi,Vj∈V,Ci,j=c
′
jci

‖Cijg(i) − g(j)‖2F + γ‖ΘjCij − CijΘi‖2F . (2)

We implement the optimization of the functional map c on the Stiefel man-
ifold using the trust region solver of the Manopt toolbox [3]. The functional
maps c are initialized as an identity matrix and refined using the manifold opti-
mization. In the online testing, the corresponding volume functions are extracted
from the novel CBCT image. The pairwise volume functions map is computed by
minimizing Eq. 1. When given additional volume images, the consistent volume
functional maps are obtained by minimizing Eq. 2.

3 Experiments

Dataset. The proposed volume functional map is evaluated on a collection con-
sisting of 10 clinically captured CBCT images of orthodontic patients, which
has 90 pairwise maps. The volume image is of a resolution of 250 × 250 × 238
with a voxel size of 0.8mm × 0.8mm × 0.8mm. We use the SLIC method [1] to
decompose each CBCT image into 20k supervoxels. For each CBCT image, there
are 680 functions, including 80 appearances, 500 contexts, 100 geodesics-related
functions.

Fig. 2. (a) Eight functional bases. Supervoxel-wise correspondence between (b) the
reference image and the target image by (c) the deformable B-spline registration, and
the proposed (d) VFM and (e) C-VFM methods.



806 Y. Zhang et al.

Qualitative Assessment. We qualitatively evaluate the supervoxel-wise label
propagation of the mandible and maxilla using two metrics: the Dice similar-
ity coefficient (DSC) and the average Hausdorff distance (AHD). We compare
the proposed pairwise volume functional map (VFM) and the consistent vol-
ume functional map (C-VFM) with the conventional label propagation meth-
ods, including the patch fusion (PF) [4], the convex optimization (CO) [13],
the volumetric deformable B-spline registration [11]. We also compare with the
random forest-based methods, including the classification forest (Cla) [5] and
the mixed metric forest (MMRF) [9] as shown in Figs. 2(b–e) and 3(a). The
label propagation accuracies of the proposed method have DSCs of 0.94 ± 0.02
and 0.93 ± 0.02 when using 75 spectral bases for the mandible and the maxilla
respectively, which are close to the conventional deformable B-spline registra-
tion. Moreover, the proposed volume functional map gains great efficiency and
consumes approx. 20 s (1.35 s for map optimization (Eq. 1) as shown in Fig. 3(d))
when using a 75×75 functional map vs. 11 min by the B-spline registration with
a 28 × 28 × 27 control grid for the segmentation transfer. The running time is
measured on a PC with an i7 CPU of 3.3 GHz and RAM of 32GB. The reason
for the online efficiency is that the functional map exploits a low dimensional
spectral transformation in the reduced function spaces. The volume functional
map with a DSC of 0.94 for the mandible label propagation improves over the
supervised Cla of 0.88 and the unsupervised MMRF of 0.92. The functional map
and the forest-based method both realize efficient online supervoxel-based cor-
respondences, whereas the latter requires a separate regularization and a large
offline forest training cost. One sampled functional map is shown in Fig. 3(e).

Fig. 3. (a) DSCs and AHDs of the label propagation of the mandible and maxilla by
the proposed VFM and C-VFM using 75 and 250 bases compared with PF [4], CO
[13], B-spline [11], Cla [5], and MMRF [9] based methods. (b) DSCs and AHDs of the
label propagation with increasing number of (b) contextual functions and (c) bases. (d)
Time costs of map optimizations of VFM and C-VFM. (e) Functional map of C-VFM.

Since the upper and lower dentitions are assigned to the mandible and max-
illa respectively, the intercuspation causes correspondence ambiguities in seg-
mentation transfer as shown in Fig. 4. The consistency regularization (Sect. 2.1)
exploits additional volumes for consistent correspondences. In our experi-
ments, we solve the correspondences between three volumes simultaneously.
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The additional volume is helpful to avoid correspondence ambiguities (Fig. 4(f)).
Furthermore, the proposed methods can work in a semi-supervised setting,
where a user interactively labeled five corresponding landmarks as shown in
Fig. 4(c). Corresponding landmarks are represented by pairs of volume functions
as described in Sect. 2, and improve the matching even when using a small set
of bases.

The functional maps are solved based on the predefined volume functions
including the context and geodesic functions. Figure 3(b) illustrates that the
label propagation accuracies are positively associated with the number of con-
textual functions. The geodesic functions facilitate the detection of connected
structures. For instance, the geodesic distance between two supervoxels of the
same structure is smaller than that of distinct structures. We observe that the
functional maps with the geodesic functions are superior to those without the
geodesic functions as constraints with mean DSC improvements of 0.53% and
0.56% for the mandible and maxilla respectively.

Fig. 4. Segmentation transfer from (a) the reference to the target image using VFM
with (b) 25 spectral bases, (c) 25 spectral bases and 5 pairs of landmarks (yellow
points), (d) 100 contextual functions, and (e) 75 bases and 500 contextual functions
without consistency constraints and (f) with consistency constraints.

In our system, the reduced harmonic bases represent the original functional
space compactly. Figure 3(c) shows DSCs of the label propagation with increas-
ing number of harmonic bases. Note that, the more bases used, the more accu-
rate label propagation. For instance, the DSC of the mandible label propagation
increases from 0.94 using 75 bases to 0.96 using 250 bases. However, the addi-
tional spectral bases increase the computational costs as shown in Fig. 3(d), in
which the functional map consumes from 37 s to 6850 s when using from 25 to
300 spectral bases regarding the C-VFM method.

4 Discussion and Conclusion

In this paper, we extend the conventional functional map on a 2D manifold of
surfaces or images to 3D volumes. We propose a novel volume functional map for



808 Y. Zhang et al.

supervoxel-wise correspondences between CBCT images for label propagation.
The low-dimensional functional map between reduced functional spaces realizes
a spectral transformation, and uniquely determines the dense supervoxel cor-
respondence between CBCT images. The proposed consistent volume map is
promising to reduce correspondence ambiguities of craniofacial structures, such
as those due to the intercuspation. The proposed method has been applied to
clinically captured CBCT images for segmentation transfer of the mandible and
maxilla with mean DSCs of 0.94 and 0.93 respectively when using 75 spectral
bases. However, we observe that volume functional maps are limited to estimate
correspondence between volumes with non-isometric deformations, e.g., the vol-
umes of an adult and a child, due to the scale-sensitive context and geodesic
functions. In the future work, we would investigate the volume functional map
for more general deformations.
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