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Abstract. We address the problem of image registration when speed
is more important than accuracy. We present a series of simplification
and approximations applicable to almost any pixel-based image similar-
ity criterion. We first sample the image at a set of sparse keypoints in
a direction normal to image edges and then create a piecewise linear
convex approximation of the individual contributions. We obtain a lin-
ear program for which a global optimum can be found very quickly by
standard algorithms. The linear program formulation also allows for an
easy addition of regularization and trust-region bounds. We have tested
the approach for affine and B-spline transformation representation but
any linear model can be used. Larger deformations can be handled by
multiresolution. We show that our method is much faster than pixel-
based registration, with only a small loss of accuracy. In comparison to
standard keypoint based registration, our method is applicable even if
individual keypoints cannot be reliably identified and matched.
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1 Introduction

Image registration [1] is one of the key image analysis tasks, especially in medical
imaging. There are many scenarios, when image registration needs to be fast —
consider matching preoperative and intraoperative images during surgery, inter-
active change detection of CT or MRI data for a busy radiologist, deformation
compensation or 3D alignment of large histological slices for a busy pathologist,
or processing large amounts of images from today’s high-throughput imaging
methods. On the other hand, sub-pixel or even pixel-level accuracy is not always
required, which gives us the possibility to trade accuracy for speed. In this work,
we shall present such a method.

Feature-based methods (e.g. [2]) are not always suitable for biomedical
images, since there are few reliable and distinguishable features (e.g. corners)
and weak constraints on the deformation field. The other class of registration
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methods, based on minimizing a pixel-based image similarity criterion, are often
slow. Luckily, it turns out that criterion evaluation can be simplified, without
compromising registration accuracy too much. Only a subset of the pixels can be
used to evaluate the criterion [3] or its gradient [4], possibly with more weights
given to pixels with a high gradient [5]. In the extreme, only edge pixels would
be sampled, which leads to the idea of registering images by their segmenta-
tions, which can be done e.g. by descriptor matching [6], or region boundary
matching [7].

We assume that a correspondences can be found reliably between regions
but not between points in their interior. We represent the criterion as a sum
of contributions from a set of sampling points placed sparsely on the region
boundaries, as in [8]. Our main new insight is that if the region boundary moves
in the normal direction, the criterion change is piecewise linear. This allows to
formulate the optimization as a linear program (LP), which can be solved very
efficiently. We present two variants of our registration method: LPSEG based on
a segmentation, and LPNOSEG based on points of high gradient.

1.1 Other Related Work

Taylor and Bhusnurmath [9] create a global piecewise linear approximation of the
similarity criterion, considering all pixels and all possible displacements, which is
a lower bound of the true criterion. This is robust but slow. Ben-Ezra et al. [10]
start by selecting a small set of keypoints using optical flow and a motion model
is fitted using linear programming. This method is capable of running at several
images per second but requires the motion to be small and the motion model to
be simple. Linear programming can also be used for keypoint matching [11].

2 Method

2.1 Similarity Criterion

A pixel dissimilarity measure � induces an image dissimilarity criterion

Jc(f, g) =
∫

x∈Ω

�
(
f(x), g(x)

)
dx (1)

where Ω ⊆ R
d is the image domain and f , g can be intensities, but also tex-

ture features, or segmentation labels. This formulation includes directly cri-
teria such as SSD or SAD, while other popular dissimilarity measures such
as mutual information can be represented approximately, with � depending
on the images and updated occasionally. During registration, we calculate
the criterion Jc(f, g′) between a reference image f and a transformed version
g′(x) =

(
g ◦ T

)
(x) = g

(
T (x)

)
of the moving image g. Following [8], we assume

to be given a set of M points pi on the boundaries between regions in the image
f , with normals ni. We are also given an a priori estimate T0 of T , which is
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Fig. 1. Left: Illustration of the sampling points pi, their normals ni, and transforma-
tions T0 and T . Right: The dependency of the registration error (top graph) and time
(bottom graph) on the number of sampling points for LPNOSEG.

(a) (b) (c) (d)

Fig. 2. Rat-kidney. Reference image (H&E) (a), moving image (Podocin) (b), overlay
before (c) and after (d) — look e.g. at the top edge for differences.

locally close to linear. If T0 ≈ T , then in g there is also a boundary close to
a point vi = T0(pi) with a scaled normal mi =

(∇T0(pi)
)
ni. The displacement

along the boundary can be neglected, since both f and g are supposed to change
only in the normal direction. Hence, the transformation T can be approximated
by its normal projection ξi at points pi (see Fig. 1, left)

T (pi) ≈ vi + miξi (2)

where ξi =
〈
T (pi) − vi, m̃i

〉
with m̃i = mi

/ ‖mi‖2 (3)

and the criterion Jc can be approximated as a sum of contributions at pi,

Jc(f, g′) ≈ J(T ) + const, where J(T ) =
M∑
i=1

Di(ξi) (4)

The individual contributions are calculated by integration along the normals

Di(ξ) = σi

∫ hmax

−hmax

�
(
f(x), g′(x)

)
dh with x = pi + nih (5)
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with σi being the area corresponding to pi and hmax the region width.
In the NLSEG method, a simple greedy strategy can provide sampling points

pi on the class boundaries and their normals [8], given a pixel- or superpixel-
based segmentations. The NLNOSEG method differs in choosing points of high
gradient, pruned with non-maxima suppression, and with ni being the gradient
direction. See Fig. 3ab for examples.

2.2 Piecewise Linear Approximation

Using the formula T (pi +nh) ≈ vi +mi(ξi +h), the integral (5) can be approx-
imated by a sum over h, sampling at 1 pixel intervals:

Di(ξ) = σi

hmax∑
h=−hmax

�
(
f(pi + nih), g

(
vi + mi(ξi + h)

))
(6)

If pi is at a boundary of a segmentation f , then f(pi +nih) is going to be equal
to some f− for h < 0 and otherwise to f+. Similarly, we assume that g(vi+mih)
is equal to some g− for h < ζi and otherwise to g+, where ζi is the unknown
normal shift at pi due to the difference between T0 and the true transformation.

The (continuous) contribution Di(ξt) is a convolution of these step functions:

Di(ξi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0
i + hmaxu

+
i if hmax ≤ t

u0
i + tu+

i if 0 ≤ t ≤ hmax

u0
i + tu−

i if − hmax ≤ t ≤ 0
u0

i − hmaxu
−
i if t ≤ −hmax

(7)

with t = ζi − ξh, u0
i = hmax

(
�(f−, g−) + �(f+, g+)

)
u+

i = �(f+, g−) − �(f+, g+), u−
i = �(f−, g−) − �(f−, g+)

For |t| > hmax, the contribution Di(ξi) is constant and does not bring any
information. This is avoided by choosing a suitable ξmax, ensuring that Di(ξi)
is only evaluated for |ξi| ≤ ξmax, assuming that the true shift also satisfies
|ζi| ≤ ξmax and choosing hmax ≥ 2ξmax.

Since the parameters in (7) are in general not known, we shall estimate them
as follows: Evaluate Di(ξ) for all shifts ξ = −ξmax . . . ξmax using (6). Keeping
the minimum and find the slope by least-squares fitting:

ζ̂i = arg min
ξ

Di(ξ), û0 = Di(ζ̂i) (8)

û+
i = arg min

u+
i

ξmax∑
ξ=ζi+1

(
Di(ξ) − D̂i(ξ)

)2 =

∑
ξ

(
Di(ξ) − û0

)
(ξ − ζ̂i)∑

ξ(ξ − ζ̂i)2

and similarly for û−
i . This is both faster and more robust than fitting all four

parameters. Note that the value of u0
i is not needed and can be dropped.
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2.3 Geometric Model and Regularization

A geometrical transformation T : Rd → R
d is represented as a linear combination

T (x) = ϕ0(x) +
N∑

j=1

cjϕj(x) (9)

with some basis functions ϕj and N scalar coefficients cj . This includes many
practically used transformation functions, such as an affine transformation,
radial basis functions etc. For nonlinear (elastic) transformations, we shall use
uniformly spaced B-splines [12], The image registration problem is then:

c∗ = arg min E(c) (10)
E(c) = J(c) + R(c) (11)

with the data criterion J(c) = J
(
T (c)

)
defined by (4) and (9). A regularization

R is needed because the image is usually not completely covered by the sampling
points ui and some coefficients cj might therefore not be completely determined.
We have chosen to penalize the �1 norms of the coefficients and their first-order
finite differences along coordinate axes [13]:

R(c) = γ |Δc|�1 + λ |c|�1 (12)

2.4 Linear Program

We can now proceed to formulate the linear program, which will help us recover
the optimal transformation parameters cj , given the contribution approximation
parameters û+

i , û−
i , ζ̂i (8). The criterion (11) is written as

min

⎡
⎣ M∑

i=1

Di + γ
∑

(j,k)∈N

rjk + λ
N∑

j=1

sj

⎤
⎦ (13)

where the absolute values from (12) were replaced using inequalities

cj − ck ≤ rjk, cj − ck ≤ rjk, cj ≤ sj , −cj ≤ sj (14)

where (j, k) are pairs of indices of neighboring B-spline coefficients c. Similarly,
we replace the piecewise linear model (7) by

Di ≥ (ξi − ξ0i )u+
i ξi ≤ ξmax (15)

Di ≥ (ξi − ξ0i )u−
i −ξi ≤ ξmax (16)

It remains to eliminate ξi from the above equations, using the linear relationship
between the shifts ξi and transformation coefficients cj from (3) and (9)

ξi =
〈
ϕ0(xi) − vi, m̃i

〉
+

N∑
j=1

cj

〈
ϕj(xi), m̃i

〉
(17)

The resulting LP with approximately (2+d)N +M variables (neglecting the
edge cases), namely Di, cj , rjk and sj , is solved using the simplex or interior
point methods.
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Table 1. Left: Average runtime in seconds and geometric error in pixels. Right: Time
for solving one LP instance with 1200 sampling points and 128 B-spline coefficients for
different LP solvers.

Method Time Error
bUnwarpJ [14] 676 129
elastix (B-splines) [15] 1286 125
FRSEG [8] 105 18
RVSS [14] 91 151
RNiftyReg (GPU) 22 67
DROP [13] 403 27
LPSEG (new) 36 50
LPNOSEG (new) 20 19

LP method time
Gurobi simplex 54ms
Gurobi interior point 79ms
GLPK simplex 145ms
GLPK interior point failed

2.5 Iteration and Multiresolution

Iteration: When the LP is solved, the resulting sampling point positions T (pi)
are compared with the sampled positions used in (6). If more than a given
percentage (e.g. 10%) of the points are considered unacceptable, the procedure
is repeated with the initial transformation T0 replaced by T . A point T (pi) is
unacceptable if its associated shift ξi is close to the assumed maximum amplitude
ξmax (usually 5–10 pixels) or if the angular difference with T0(pi) is larger than
a given threshold (e.g. 60◦).

Multiresolution: At each level, the image size is reduced by a factor of two and
the resulting transformation is used as the initial transformation T0 at the next
finer level. The number of sampling points is also reduced at each level by taking
every second point, unless a desired minimum number of points is achieved. The
final multiresolution aspect is that we usually start by an affine transformation
and progressively shift to B-spline models with more and more parameters. This
is controlled by the desired knot spacing.

3 Experiments

The first example in Fig. 2 shows histological slices and their alignment by the
LPSEG algorithm. For these images of ≈ 800 × 1100 pixels, the complete reg-
istration process takes about 2 s. However, most of the time is taken by the
segmentation; once sampling points are extracted, the registration itself takes
only 0.2 s.

Images in Fig. 3 are already much larger (≈ 5000× 3000 pixels) and the run-
ning time of the LPSEG method has grown to 36 s, with 33 s taken by the segmen-
tation and only 3 s by the registration itself. The segmentation-less LPNOSEG
is faster, requiring around 20 s, with 15 s to identify the sampling points and 5 s
for the registration itself. In this case, the registration by LPNOSEG is better
(see the bottom edge of Fig. 3hi).
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Fig. 3. Reference image with sampling points (a) and its segmentation (b) with inde-
pendently extracted sampling points, segmentation overlay before registration (c).
Moving image (d), its segmentation (e), and segmentation overlay after registration
(f). Image overlay before registration (g), image overlay after LPSEG registration using
segmentation (h) and using LPNOSEG without segmentation (i).

The graphs in the right part of Fig. 1 show the dependency of the running
time and the mean registration error (measured using manually identified land-
marks [8]) on the number of sampling points for the LPNOSEG algorithm. Note
that the error decreases with an increasing number of sampling points and then
it stagnates, as further points are probably not sufficiently reliable or accurate.
The running time increases with the number of points but only slowly, the dom-
inant part seems to be the preprocessing.

Table 1 (right) compares the GLPK1 and Gurobi2 LP solvers. Finally, the left
part of Table 1 compares the speed and accuracy of our two proposed methods
(LPSEG, LPNOSEG) with the alternatives mentioned in [8] on a subset of the
same dataset with images of size around 5000 × 3000 (as in Fig. 3). FRSEG [8]
(fast registration of segmented images) is similar to LPSEG but does not use
the LP formulation. We see that LPSEG is fast and LPNOSEG even faster.
The only other method with comparable speed is the GPU-accelerated version

1 https://www.gnu.org/software/glpk/.
2 http://www.gurobi.com.

https://www.gnu.org/software/glpk/
http://www.gurobi.com
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of RNiftyReg. At the same time, our methods are accurate, outperformed only
by the slower FRSEG, which is based on the same ideas.

4 Conclusions

We have presented two very fast image registration methods based on simpli-
fying images using segmentations (LPSEG method) and representing the sim-
ilarity criterion using contributions at a set of sampling points. The novelty
here is representing the problem as a linear program, allowing an efficient and
robust optimization. We have also shown that segmentation can be sometimes
advantageously replaced by edge-finding (LPNOSEG), with a further increase
in speed. The bottleneck is currently the segmentation or edge-finding but we
hope it should be possible to avoid it by using a faster segmentation algorithm
or a GPU implementation.

Acknowledgments. The authors acknowledge the support of the Czech Sci-
ence Foundation project 17-15361S and the OP VVV project CZ.02.1.01/0.0/0.0/
16 019/0000765.
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