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Abstract. Deformable image registration (DIR) in thoracic 4D CT
image data is integral for, e.g., radiotherapy treatment planning, but time
consuming. Deep learning (DL)-based DIR promises speed-up, but pre-
sent solutions are limited to small image sizes. In this paper, we propose
a General Deep Learning-based Fast Image Registration framework suit-
able for application to clinical 4D CT data (GDL-FIRE*P). Open source
DIR frameworks are selected to build GDL-FIRE*P variants. In-house-
acquired 4D CT images serve as training and open 4D CT data repos-
itories as external evaluation cohorts. Taking up current attempts to
DIR uncertainty estimation, dropout-based uncertainty maps for GDL-
FIREP variants are analyzed. We show that (1) registration accuracy
of GDL-FIRE*P and standard DIR are in the same order; (2) computa-
tion time is reduced to a few seconds (here: 60-fold speed-up); and (3)
dropout-based uncertainty maps do not correlate to across-DIR vector
field differences, raising doubts about applicability in the given context.
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1 Introduction

Acquisition of 4D image data (3D+t images, respiration-correlated data) is an
integral part of current radiation therapy (RT) workflows for RT planning and
treatment of thoracic and abdominal tumors. Especially 4D CT imaging is mean-
while widespread and currently estimated to be routinely applied in approxi-
mately 70% of the RT facilities in the United States [1]. Typical clinical use cases
of 4D CT data are (semi-)automated target volume and organ at risk contour
propagation; assessment of motion effects on dose distributions (4D RT quality
assurance, dose warping) [2]; and 4D CT-based lung ventilation estimation and
its incorporation into RT treatment planning [1].
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At this, a key step is the application of deformable image registration (DIR)
to the phase images of the 4D CT data. Traditional DIR approaches tackle the
underlying task of finding an optimal transformation mapping two phase images
by minimization of a dissimilarity measure that controls local correspondences
of voxel intensities [3]. Yet, the algorithms are time consuming and there exists
the risk of getting stuck in local minima during optimization.

Motivated by the exceptional success of deep learning (DL) and especially
convolutional neural networks (CNNs) for image segmentation and classification
tasks, meanwhile a number of approaches has been proposed to also solve image
registration tasks by CNNs — first in the context of optical flow estimation in
computer vision [4], and later similarly for medical image registration [3,5-7].
Yang et al. further extended a CNN-based DIR architecture to a probabilistic
framework using dropouts [5], resulting in DIR uncertainty maps that could be
of great value for RT treatment planning [8].

However, Uzunova et al. noted that “dense 3D registration with CNNs is
currently computationally infeasible” [6], and focused on 2D (brain and cardiac)
DIR only. To overcome this issue, patch-based approaches have been proposed
for, e.g., 3D brain DIR [5], with the side effect that global information about the
transformation to learn might be missing [3]. In turn, Rohé et al. indeed proposed
using a fully convolutional architecture; with a size of 64 x 64 x 16 voxel, their
cardiac MR images were, however, not even close to typical sizes of 4D CT
images (in the order of 512 x 512 x 150 voxel per phase image).

This paper is therefore dedicated to CNN-based registration suitable for
application to fast DIR in clinical thoracic 4D CT data. Taking up the afore-
mentioned challenges and trends in current DL-based DIR,

C1 we propose a general and efficient CNN-based framework for deep learning
of dense motion fields in clinical thoracic 4D CT, called GDL-FIRE*P,

C2 build variants of GDL-FIRE*P using common open source DIR frameworks,

C3 perform a first comprehensive evaluation thereof using publicly available 4D
CT data repositories (thereby presenting first respective benchmark baseline
results for DL-based DIR in 4D CT data), and

C4 compare and discuss dropout-generated registration uncertainty maps for
the different GDL-FIRE*P variants.

To the best of our knowledge, all aspects C1-C4 are novel contributions in the
given application context.

The remainder of the paper is structured as follows: In Sect. 2, the problem
formulation and the concept of GDL-FIRE*P are detailed. Applied data sets and
performed experiments are described in Sect. 3 and respective results given and
discussed in Sect. 4. The paper closes with concluding remarks in Sect. 5.

2 Methods: DL-Based Deformable Image Registration

A 4D CT image is a series (Ii)z‘e{l """" npy} OF 3D CT images I; : 2 — R, 2 C R3,
representing the patient geometry at different breathing phases ¢ with npy as
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number of available images and breathing phases, respectively. The phases @
sample the patient’s breathing cycle in time and are usually denoted by cycle
fractions, i.e. {1,...,npn} = {0%,...,50%, ...} with 0% as end inspiration and
50% as end expiration phase. Deformable registration in 4D CT data then aims
to estimate a corresponding series of transformations (;), . {1oempn} between the
I; and a reference image I..¢, with ¢; : 2 — (2. For the applications outlined in
Sect. 1, Ief usually represents one of the phase images I; and the transformation
©; and vector fields u; : £2 — R3, u; = ¢; —id (id: identity map) the respiration-
induced motion of the image structures between phase i and the reference phase.

2.1 Traditional Deformable Image Registration (DIR) Formulation

In a traditional 4D CT DIR setting, the reference image is considered the fixed
image, It = Ir, and the phase images as moving images, I; = I;, which are
sequentially registered to Iy by ¢; = argming-ec2(o) J [Ir, Int; }] to compute
the sought transformations (‘Pi)ie{l,...,nph}' The exact functional 7, i.e. dissim-
ilarity measure, applied regularization approach and considered transformation
model, and the optimization strategy vary in the community; see [9] for details.

2.2 Convolutional Neural Networks (CNNs) for DIR

Different to traditional DIR, we now assume a database of np,; training tuples
(If,[?go%), i,j € {1,...,npn}, p € {1,...,npar} to be given; ¢}, = id + uj;
represents a DIR result of the phase images I; = Ir and I; of patient p. The
goal is to learn the relationship between the input data (I7, I H ) and uj; by a
convolutional neural network.

As noted by Uzunova et al. [6], it is currently computationally not feasi-
ble to directly feed the entire images and vector fields into a CNN or GPU
memory. Instead, we propose a slab-based approach: Let I|; := I|p, be the
restriction of image I to 2; = {(z,y,2) € 2 | v = &}, i.e. the sagittal
slice of I at x-position &. Similarly, let |, z,) be the restriction of I to
Q3,350 = 1(,9,2) € 2|31 <2 < 22}, 1.e. an image slab comprising the sagittal

slices Z1, . .., &2 of I. Using this notation, the aforementioned training tuples were
converted to slab-based training samples (If\[m,27m+2],If|[m,2?z+2],ufj|z) with
2 € {@min, - - -, Tmax } covering all sagittal slices of I. The rationale was to repre-

sent maximum information along main motion directions inferior-superior and
anterior-posterior for each training sample, but also to provide some anatomical
context in lateral direction.

Furthermore, the image dynamics were rescaled to [0, 1], the slabs resam-
pled to isotropic resolution of 2mm and cropped/zero-padded to identical size,
and the non-patient background intensity set to zero. Similar pre-processing
was applied to the displacement fields (resampling and -sizing of sagittal slices,
background set to zero). In addition, z-, y- and z-displacement components
were z-transformed on a voxel-level to avoid unintended suppression of small
displacements during CNN training. Thus, the CNN aimed to learn normalized
3D-vectors for the individual voxels of sagittal slices, which are back-transformed
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Fig. 1. CNN architecture implemented for DL-based DIR.

to actual motion fields during final reconstruction of the fields. The pre-processed
slab-based samples (I |(z—2,242]; I} lfz—2,0+2] Uijle) With 2 € {Zmin, -, Zmax } Of
the np,t patients were finally shuffled and used for CNN training.

We tested different CNN architectures, including the classical U-Net [10]. Due
to an observed increased robustness for DL-based DIR compared to the U-Net,
we finally used an iterative CNN architecture with an Inception-ResNet-v2 [11]
embedded in the encoder part of a pre-trained CT autoencoder, see Fig. 1, with
MSE (mean squared error) loss function and NADAM optimizer (implemented
in Tensorflow). Iterative means that we cascaded copies of the trained networks
for improved coverage of large motion patterns.

2.3 Probabilistic CNN-Based DIR

As detailed by Yang et al. [5] and references therein, deterministic CNN archi-
tectures can be extended to probabilistic using dropouts [12]. Briefly speaking,
the dropout layers incorporated into the CNN architecture to prevent overfit-
ting during model training remain enabled during motion prediction. Repeated
motion prediction with respectively sampled connections to be dropped even-
tually enable computing the sought motion field as the mean of the sampled
predicted fields; further, corresponding voxel-wise variances can be interpreted
as local registration uncertainty estimates [5].

3 Materials and Study Design

All experiments were run on a desktop computer with Intel Xeon CPU E5-1620
and Nvidia Titan Xp GPU. Models and scripts required can be found at https://
github.com/IPMI-ICNS-UKE/gdl-fire-4d.

3.1 Training and Testing 4D CT Data Cohorts

For CNN training and model optimization, a cohort of 69 in-house acquired RT
treatment planning ten-phase 4D CT data sets of patients with small lung and
liver tumors was used (image size: 512 x 512 x 159 voxel) and a 85%/15% split
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Fig. 2. Motion fields estimated by the original DIR algorithms (left column); GDL-
FIRE'® with only a single iteration (2nd column); GDL-FIRE*P n iterations (3rd
column); and GDL-FIREP variant-specific registration uncertainty maps (right col-
umn). Data set: DIRLAB case 08, DIR of 0% and 50% phase images.

into training and testing data performed. The 4D CT images of the open data
repositories DIRLAB [13] and CREATIS [14] (see also www.creatis.insa-lyon.fr/
rio/popi-model) served as external evaluation cohort of the trained CNNs (i.e.
no model optimization performed by means of the external 4D CT cohorts).

3.2 Applied DIR Frameworks and Algorithms

To provide motion field training data, the in-house 4D CT data were registered
using three common open source DIR frameworks: PlastiMatch [15], NiftyReg
[16], and VarReg [17]. All approaches have been proven suitable for 4D CT
registration [9]; the applied parameters were similar to respective EMPIRE10
parameters [9]. However, the algorithms are applied in a plug-and-play manner
(no data pre-processing or pre-registration, no masks used). For each DIR algo-
rithm, motion fields were provided between the 20% phase image (served as Ir)
and all other phase images.
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3.3 Experiments and Evaluation Measures

For each DIR algorithm, a respective probabilistic GDL-FIRE*P variant was
built (up to 4 cascaded CNNs, 20% dropouts). DIR accuracy was evaluated by
the target registration error (TRE), computed by means of the landmarks pub-
licly available for the DIRLAB and CREATIS data. In addition, the smoothness
of transformations of the different DIR approaches and GDL-FIRE*P variants
was analyzed in terms of the standard deviation of transformation Jacobian
determinant values of the lung voxels of the evaluation data.

4 Results and Discussion

Motion fields estimated by the original DIR algorithms and respective GDL-
FIRE*P variants as well as corresponding registration uncertainty maps are
shown in Fig.2 for DIRLAB case 08 (DIRLAB case with maximum motion
amplitude) and phase 50% to phase 0% DIR. The similarity of the original and
the GDL-FIRE*P predicted fields is striking, i.e. the CNN obviously learned the
DIR-specific transformation properties. This includes that the NiftyReg GDL-
FIRE*P variant has (similar to the original DIR) problems to directly cover
larger motion amplitudes — and thereby motivates cascading several trained
models for iterative CNN-based DIR. The success can be seen in Table 1, where
the NiftyReg GDL-FIRE*P outperforms the original NiftyReg DIR in terms of
accuracy especially for cases with larger motion.

Still, GDL-FIRE*P DIR accuracy as well as transformation properties for
the other DIR approaches also resemble respective values of the traditional reg-
istration algorithm — but GDL-FIRE*P offers a reduction of the runtime from
approx. 15 min to a few seconds (speedup of approx. 60-fold).

Finally, it can be seen that the computed DIR uncertainty maps differ greatly
between the GDL-FIRE*P variants. In Fig.3, a dataset of our internal test-
ing cohort is shown that exhibits an artifact in the liver. This artifact led to

GDLNR - VR

GDLNR, & GDLVE, &
o "

Ant. — Post. ) Ant. — Post. Ant. — Post. Ant. — Post.

Inferior — Superior

Fig. 3. From left to right: CT image serving as reference image with artifact in liver; dif-
ference of motion amplitudes estimated by the NiftyReg and the VarReg GDL-FIRE*P
variants, illustrating large across-DIR approach differences; NiftyReg and VarReg GDL-
FIRE®P uncertainty maps, showing negligible uncertainties for both variants.
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Table 1. TRE values (in mm) and transformation smoothness (measured by stan-
dard deviation of lung voxel Jacobian determinant values), listed for the DIRLAB and
CREATIS data, the individual DIR algorithms, and respective GDL-FIREP variants
(PM: PlastiMatch; NR: NiftyReg; VR: VarReg). Landmark distance before registra-
tion: (8.46 & 6.58) mm for the DIRLAB and (8.11 +4.76) mm for the CREATIS data.

Original DIR algorithms GDL-FIRE4P
PM [16] NR [15] VR [17] PM NR VR
DIRLAB 4DCT | 01 | 1.54 + 0.98 | 1.46 + 0.92 | 1.13 £ 0.54 | 1.69 + 0.92 | 1.58 + 0.80 | 1.20 + 0.60
02|1.74+1.76 | 1.554+1.06 |1.17 +0.83 | 1.58 + 1.07 | 1.65 + 1.15 | 1.19 4 0.63
03 [2.78 +2.20|2.53+2.41 |1.33+0.69 |2.39 + 1.76 | 2.68 + 1.78 | 1.67 & 0.90
04 [2.70 +£2.27 | 3.01 + 2.45 | 3.08 +3.83 [ 2.72 + 1.97 | 2.48 + 1.68 | 2.53 & 2.01
05| 3.30 +3.06 | 3.21 £2.77 | 1.57 & 1.33 | 2.83 + 2.21 | 3.09 & 2.50 | 2.06 + 1.56
06 | 3.80 +3.03 | 5.40 £ 3.94 |5.23 4+ 4.67 | 3.01 +1.97 | 2.73 & 1.63 | 2.90 + 1.70
07 | 5.62+5.32 | 8.36 £ 6.59 | 4.64+3.91 | 4.48 +4.83 | 4.12 + 4.21 | 3.60 + 2.99
08 | 7.65+7.45 | 11.45 + 9.08 | 4.58 & 5.95 | 7.44 + 6.87 | 8.26 & 6.47 | 5.29 + 5.52
09 | 3.74 +2.60 | 5.66 & 3.24 | 2.66 & 2.46 | 3.56 + 2.35 | 3.26 & 1.90 | 2.38 + 1.46
10 | 3.15 +2.99 | 4.39 + 4.21 2.14 4+2.42 | 2.48 +£1.99 | 2.55 +2.01 | 2.13 + 1.88
@ TRE 3.60+ 1.83 | 4.70 £3.17 | 2.75+1.57 | 3.22 4+ 1.71 | 3.24 & 1.81 | 2.50 + 1.16
P 0|y, 0.10 +£0.02 | 0.11 £ 0.03 | 0.39 & 0.08 | 0.30 + 0.13 | 0.24 £ 0.09 | 0.39 + 0.14
CREATIS 01[1.13+0.78|1.79+1.26 |0.90+0.39 | 1.49 + 0.83 | 1.73 + 0.97 | 1.34 4+ 0.74
02 [3.29+3.10 | 4.29 +4.33 | 1.95 + 2.87 | 3.59 + 2.92 | 4.25 + 3.47 | 2.98 4 2.38
03[1.95+2.14|2.39+2.60 |1.14+ 1.37 | 1.83 + 1.42 | 2.05 + 1.26 | 1.57 & 1.01
04 2.32+295|251+287 |1.28+2.13|1.79+1.79 | 1.92+ 1.73 | 1.64 + 1.62
05|1.88+1.84|2.514+2.73 |1.17+1.17 [2.10 + 1.78 | 2.18 + 1.67 | 1.62 & 1.09
06 |1.13+0.78 | 1.52+1.38 | 0.97 £0.72 | 1.60 + 1.07 | 1.63 + 1.11 | 1.26 & 0.73
@ TRE 2.01 4 0.68 | 2.50 £ 0.88 | 1.24 4+ 0.34 | 2.07 4+ 0.78 | 2.29 4 0.89 | 1.74 + 0.57
D 0wy 0.09 4 0.02 | 0.11 £ 0.05 | 0.28 + 0.05 | 0.31 4 0.12 | 0.26 & 0.08 | 0.30 = 0.10

very different motion patterns estimated by the NiftyReg and the VarReg GDL-
FIRE*P variant, but almost no measurable uncertainty for both DIR approaches.
Being a direct consequence of the concept of probabilistic CNN-based DIR,
this does, however, not match our understanding of DIR, uncertainty and raises
doubts regarding its applicability for RT planning and estimation of uncertain-
ties therein.

5 Conclusions

The presented GDL-FIRE*P framework illustrates feasibility and potential of
deep learning of dense vector fields for motion estimation in clinical thoracic 4D
CT image data (TRE values of CNN-based DIR were in the same order than for
the underlying DIR algorithms, accompanied by a speed-up factor of approxi-
mately 60), and thereby motivates continuing optimization of the framework.
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