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Abstract. Traditional deformable registration techniques achieve
impressive results and offer a rigorous theoretical treatment, but are
computationally intensive since they solve an optimization problem for
each image pair. Recently, learning-based methods have facilitated fast
registration by learning spatial deformation functions. However, these
approaches use restricted deformation models, require supervised labels,
or do not guarantee a diffeomorphic (topology-preserving) registration.
Furthermore, learning-based registration tools have not been derived
from a probabilistic framework that can offer uncertainty estimates. In
this paper, we present a probabilistic generative model and derive an
unsupervised learning-based inference algorithm that makes use of recent
developments in convolutional neural networks (CNNs). We demonstrate
our method on a 3D brain registration task, and provide an empirical
analysis of the algorithm. Our approach results in state of the art accu-
racy and very fast runtimes, while providing diffeomorphic guarantees
and uncertainty estimates. Our implementation is available online at
http://voxelmorph.csail.mit.edu.

1 Introduction

Deformable registration computes a dense correspondence between two images,
and is fundamental to many medical image analysis tasks. Traditional meth-
ods solve an optimization over the space of deformations, such as elastic-type
models [4], B splines [25], dense vector fields [27], or discrete methods [8,12].
Constraining the allowable transformations to diffeomorphisms ensures certain
desirable properties, such as preservation of topology. Diffeomorphic transforms
have seen extensive methodological development, yielding state-of-the-art tools,
such as LDDMM [6,29], DARTEL [2], and SyN [3]. However, these tools often
demand substantial time and computational resources for a given image pair.

Recent methods have proposed to train neural networks that map a pair of
input images to an output deformation. These approaches usually require ground
truth registration fields, often derived via more conventional registration tools,
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which can introduce a bias and necessitate significant preprocessing [23,26,28].
Some preliminary papers [9,18] explore unsupervised strategies that build on
the spatial transformer network [15], but are only demonstrated with constrained
deformation models such as affine or small displacement fields. Furthermore, they
have only been validated on limited volumes, such as 3D patches or 2D slices. A
recent paper avoids these pitfalls, but still does not provide topology-preserving
guarantees or probabilistic uncertainty estimates, which yield meaningful infor-
mation for downstream image analysis [5].

In this paper we present a formulation for registration as conducting varia-
tional inference on a probabilistic generative model. This framework naturally
results in a learning algorithm that uses a convolutional neural network with
an intuitive cost function. We introduce novel diffeomorphic integration layers
combined with a transform layer to enable unsupervised end-to-end learning
for diffeomorphic registration. We present extensive experiments, demonstrating
that our algorithm achieves state of the art registration accuracy while pro-
viding diffeomorphic deformations, fast runtime and estimates of registration
uncertainty.

1.1 Diffeomorphic Registration

Although the method presented in this paper applies to a multitude of
deformable representations, we choose to work with diffeomorphisms, and in par-
ticular with a stationary velocity field representation [2]. Diffeomorphic defor-
mations are differentiable and invertible, and thus preserve topology. Let φ :
R3 → R3 represent the deformation that maps the coordinates from one image
to coordinates in another image. In our implementation, the deformation field is
defined through the following ordinary differential equation (ODE):

∂φ(t)

∂t
= v(φ(t)) (1)

where φ(0) = Id is the identity transformation and t is time. We integrate the
stationary velocity field v over t = [0, 1] to obtain the final registration field φ(1).

We compute the integration numerically using scaling and squaring [1], which
we briefly review here. The integration of a stationary ODE represents a one-
parameter subgroup of diffeomorphisms. In group theory, v is a member of the
Lie algebra and is exponentiated to produce φ(1), which is a member of the Lie
group: φ(1) = exp(v). From the properties of one-parameter subgroups, for any
scalars t and t′, exp((t+t′)v) = exp(tv)◦exp(t′v), where ◦ is a composition map
associated with the Lie group. Starting from φ(1/2T ) = p + v(p)/2T where p is
a map of spatial locations, we use the recurrence φ(1/2t−1) = φ(1/2t) ◦ φ(1/2t) to
obtain φ(1) = φ(1/2) ◦ φ(1/2). T is chosen so that v/2T ≈ 0.

2 Methods

Let x and y be 3D images, such as MRI volumes, and let z be a latent vari-
able that parametrizes a transformation function φz : R3 → R3. We use a
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generative model to describe the formation of x by warping y into y ◦ φz . We
propose a variational inference method that uses a neural network of convo-
lutions, diffeomorphic integration, and spatial transform layers. We learn the
network parameters in an unsupervised fashion, i.e., without access to ground
truth registrations. We describe how the network yields fast diffeomorphic reg-
istration of a new image pair x and y, while providing uncertainty estimates.

2.1 Generative Model

We model the prior probability of z as:

p(z) = N (z;0,Σz), (2)

where N (·;μ,Σ) is the multivariate normal distribution with mean μ and covari-
ance Σ. Our work applies to a wide range of representations z. For example, z
could be a low-dimensional embedding of a dense displacement field, or even the
displacement field itself. In this paper, we let z be a stationary velocity field
that specifies a diffeomorphism through the ODE (1). We let L = D −A be the
Laplacian of a neighborhood graph defined on a voxel grid, where D is the graph
degree matrix, and A is a voxel neighbourhood adjacency matrix. We encourage
spatial smoothness of z by letting Σ−1

z = Λz = λL, where Λz is a precision
matrix and λ denotes a parameter controlling the scale of the velocity field z.

We let x be a noisy observation of warped image y:

p(x|z;y) = N (x;y ◦ φz , σ2I), (3)

where σ2 reflects the variance of additive image noise.
We aim to estimate the posterior registration probability p(z|x;y). Using

this, we can obtain the most likely registration field φz for a new image
pair (x,y) via MAP estimation, along with an estimate of uncertainty for this
registration.

2.2 Learning

With our assumptions, computing the posterior probability p(z|x;y) is
intractable. We use a variational approach, and introduce an approximate poste-
rior probability qψ (z|x;y) parametrized by ψ. We minimize the KL divergence

min
ψ

KL [qψ (z|x;y)||p(z|x;y)]

= min
ψ

IEq [log qψ (z|x;y) − log p(z|x;y)]

= min
ψ

IEq [log qψ (z|x;y) − log p(z,x,y)] + log p(x;y)

= min
ψ

KL [qψ (z|x;y)||p(z)] − IEq [log p(x|z;y)] , (4)
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Fig. 1. Overview of end-to-end unsupervised architecture. The first part of the net-
work, defψ(x,y) takes the input images and outputs the approximate posterior proba-
bility parameters representing the velocity field mean, μz|x;y, and variance, Σz|x;y. A
velocity field z is sampled and transformed to a diffeomorphic deformation field φz

using novel differentiable squaring and scaling layers. Finally, a spatial transform
warps y to obtain y ◦ φz.

which is the negative of the variational lower bound of the model evidence [16].
We model the approximate posterior qψ (z|x;y) as a multivariate normal:

qψ (z|x;y) = N (z;μz|x,y,Σz|x,y), (5)

where Σz|x,y is diagonal.
We estimate μz|x,y, and Σz|x,y using a convolutional neural net-

work defψ (x,y) parameterized by ψ, as described below. We can therefore
learn the parameters ψ by optimizing the variational lower bound (4) using
stochastic gradient methods. Specifically, for each image pair {x,y} and sam-
ples zk ∼ qψ(z|x;y), we can compute y ◦ φzk

, with the resulting loss:

L(ψ ;x, y) = −IEq [log p(x|z ; y)] + KL [qψ (z |x; y)||p(z)] (6)

=
1

2σ2K

∑

k

||x − y ◦ φzk
||2 +

1

2

[
tr(λDΣ z|x;y − log |Σ z|x;y|) + μ

T
z|x,yΛzμz|x,y

]
+ const,

where K is the number of samples used. In our experiments, we use K = 1.
The first term encourages the warped image y ◦ φzk

to be similar to x. The
second term encourages the posterior to be close to the prior p(z). Although the
variational covariance Σz|x,y is diagonal, the last term spatially smoothes the
mean: μT

z|x,yΛzμz|x,y = λ
2

∑ ∑
j∈N(I)(μ[i]−μ[j])2, where N(i) are the neighbors

of voxel i. We treat σ2 and λ as fixed hyper-parameters.

2.3 Neural Network Framework

We design the network defψ (x,y) that takes as input x and y and outputs μz|x,y

and Σz|x,y, based on a 3D UNet-style architecture [24]. The network includes
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a convolutional layer with 16 filters, four downsampling layers with 32 convo-
lutional filters and a stride of two, and finally three upsampling convolutional
layers with 32 filters. All convolutional layers use LeakyReLu activations and a
3× 3 kernel.

To enable unsupervised learning of parameters ψ using (6), we must form y◦
φz to compute the data term. We first implement a layer that samples a new
zk ∼ N (μz|x,y,Σz|x,y) using the “re-parameterization trick” [16].

We propose novel scaling and squaring network layers to compute φzk
=

exp(zk). Specifically, these involve compositions within the neural network archi-
tecture using a differentiable spatial transformation operation. Given two 3D
vector fields a and b, for each voxel p this layer computes (a ◦ b)(p) = a(b(p)),
a non-integer voxel location b(p) in a, using linear interpolation. Starting
with φ(1/2T ) = p + zk/2T , we compute φ(1/2t+1) = φ(1/2t) ◦ φ(1/2t) recursively
using these layers, leading to φ(1) � φzk

= exp(zk). In our experiments, we
use T = 7.

Finally, we use a spatial transform layer to warp volume y according
to the computed diffeomorphic field φzk

. This network results in three out-
puts, μz|x,y,Σz|x,y and y ◦ φzk

, which are used in the model loss (6).
In summary, the neural network takes as input x and y, computes μz|x,y

and Σz|x,y, samples a new zk ∼ N (μk,Σk), computes a diffeomorphic φzk
and

applies it to y. Since all the steps are designed to be differentiable, we learn
the network parameters using stochastic gradient descent based methods on the
loss (6). The framework is summarized in Fig. 1. We implement our method as
part of the VoxelMorph package using Keras with a Tensorflow backend.

2.4 Registration and Uncertainty

Given learned parameters, we approximate registration of a new scan pair (x,y)
using φẑk

. We first obtain ẑk using

ẑk = arg max
zk

p(zk|x;y) = μz|x;y, (7)

by evaluating the neural network defψ(x,y) on the two input images. We
then compute φẑk

using the scaling and squaring network layers. We also
obtain Σz|x,y, enabling an estimation of the uncertainty of the velocity field
z at each voxel j:

H(z[j]) ≈ IE [− log qψ (z|x,y)] =
1
2

log 2πΣz|x;y[j, j]. (8)

We also estimate uncertainty in the deformation field φz empirically. We
sample several representations zk′ ∼ qψ(z|x;y), propagate them through
the diffeomorphic layers to compute φz′

k
, and compute the empirical diago-

nal covariance Σ̂φz
[j, j] across samples. The uncertainty is then H(φ[j]) ≈

1
2 log 2πΣ̂φz

[j, j].
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Fig. 2. Example MR slices of input moving image, atlas, and resulting warped image
for our method and ANTs, with overlaid boundaries of ventricles, thalami and hip-
pocampi. Our resulting registration field is shown as a warped grid and RGB image,
with each channel representing dimension. Due to space constraints, we omit Voxel-
Morph examples, which are visually similar to our results and ANTs.

3 Experiments

We focus on 3D atlas-based registration, a common task in population analysis.
Specifically, we register each scan to an atlas computed using external data [11].

Data and Preprocessing. We use a large-scale, multi-site dataset of 7829 T1-
weighted brain MRI scans from eight publicly available datasets: ADNI [22],
OASIS [19], ABIDE [10], ADHD200 [21], MCIC [13], PPMI [20], HABS [7], and
Harvard GSP [14]. Acquisition details, subject age ranges and health conditions
are different for each dataset. We performed standard pre-processing steps on
all scans, including resampling to 1mm isotropic voxels, affine spatial normal-
ization and brain extraction for each scan using FreeSurfer [11]. We crop the
final images to 160 × 192 × 224. Segmentation maps including 29 anatomical
structures, obtained using FreeSurfer for each scan, are used in evaluating reg-
istration results. We split the dataset into 7329, 250, and 250 volumes for train,
validation, and test sets respectively, although we underscore that the training
is unsupervised.

Evaluation Metric. To evaluate a registration algorithm, we register each sub-
ject to an atlas, propagate the segmentation map using the resulting warp, and
measure volume overlap using the Dice metric. We also evaluate the diffeomor-
phic property, a focus of our model. Specifically, the Jacobian matrix Jφ(p) =
∇φ(p) ∈ R3×3 captures the local properties of φ around voxel p. The local
deformation is diffeomorphic, both invertible and orientation-preserving, only at
locations for which |Jφ(p)| > 0 [2]. We count all other voxels, where |Jφ(p)| ≤ 0.

Baseline Methods. We compare our approach with the popular ANTs soft-
ware package using Symmetric Normalization (SyN) [3], a top-performing algo-
rithm [17]. We found that the default ANTs settings were sub-optimal for our
task, so we performed a wide parameter and similarity metric search across a
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Table 1. Summary of results: mean Dice scores over all anatomical structures and
subjects (higher is better), mean runtime; and mean number of locations with a non-
positive Jacobian of each registration field (lower is better). All methods have compa-
rable Dice scores, while our method and the original VoxelMorph are orders of magni-
tude faster than ANTs. Only our method achieves both high accuracy and fast runtime
while also having nearly zero non-negative Jacobian locations and providing uncertainty
prediction.

Method Avg. Dice GPU sec CPU sec |JΦ| ≤ 0 Uncertainty

Affine only 0.567 (0.157) 0 0 0 No

ANTs (SyN) 0.750 (0.135) - 9059 (2023) 6505 (3024) No

VoxelMorph 0.750 (0.137) 0.554 (0.017) 144 (1) 18096 (4230) No

Ours 0.753 (0.137) 0.451 (0.011) 51 (0.2) 0.7 (2.0) Yes

multitude of datasets. We identified top performing parameter values on the Dice
metric and used cross-correlation as the ANTs similarity measure. We also test
our recent CNN-based method, VoxelMorph, which aims to produce fast regis-
tration but does not yield diffeomorphic results or uncertainty estimates [5]. We
sweep the regularization parameter using our validation set, and use the optimal
parameters in our results.

Results on Test Set: Figure 2 shows representative results. Figure 3 illustrates
Dice results on several anatomical structures, and Table 1 gives a summary of the
results. Not only does our algorithm achieve state of the art Dice results and the
fastest runtimes, but it also produces diffeomorphic registration fields (having
nearly no non-negative Jacobian voxels per scan) and uncertainty estimates.

Specifically, all methods achieve comparable Dice results on each structure
and overall. Our method and VoxelMorph require a fraction of the ANTs runtime
to register two images: less than a second on a GPU, and less than a minute on a

Fig. 3. Boxplots indicating Dice scores for anatomical structures for ANTs, Voxel-
Morph, and our algorithm. Left and right hemisphere structures are merged for visual-
ization, and ordered by average ANTs Dice score. We include the brain stem (BS), tha-
lamus (Th), cerebellum cortex (CblmC), lateral ventricle (LV), cerebellum white mat-
ter (CblmWM), putamen (Pu), cerebral white matter (CeblWM), ventral DC (VDC),
caudate (Ca), pallidum (Pa), hippocampus (Hi), 3rd ventricle (3V), 4th ventricle (4V),
amygdala (Am), CSF (CSF), cerebral cortex (CeblC), and choroid plexus (CP).
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Fig. 4. Example velocity field uncertainty H(z) (left) indicates low uncertainty near
structure boundaries, as seen in the line graph (middle). This correlation is less obvious
in the final registration field uncertainty H(φz) (right).

CPU (for our method). To the best of our knowledge, ANTs does not have a GPU
implementation. Algorithm runtimes were computed for an NVIDIA TitanX
GPU and a Intel Xeon (E5-2680) CPU, and exclude preprocessing common to all
methods. Importantly, while our method achieves positive Jacobians at nearly all
voxels, the flow fields resulting from the baseline methods contain a few thousand
locations of non-positive Jacobians. This can be alleviated with increased spatial
regularization, but this in turn leads to a drop in performance on the Dice metric.

Uncertainty. Figure 4 shows representative uncertainty maps, unique to our
model. The velocity field is more certain near anatomical structure edges, and less
confident in homogenous regions, such as the white matter or ventricle interior.

Parameter Analysis. We perform a grid search for the two fixed hyper-
parameters λ and σ2. We train a model for each parameter pair and evaluate
Dice on the validation set. We search 30 values within two orders of magni-
tude around meaningful initial values for both parameters: σ2 ∼ (0.07)2, the
variance of the intensity difference between an affinely aligned image and the
atlas, and λ = 10000, equivalent to a diagonal standard deviation of 1 voxel
for φz. We found σ2 ∼ (0.035)2 and λ ∈ (20000, 100000) to perform well, and
set λ = 70, 000.

4 Conclusion

We propose a probabilistic model for diffeomorphic image registration and derive
a learning algorithm that makes use of a convolutional neural network and an
intuitive resulting loss function. To achieve unsupervised, end-to-end learning
for diffeomorphic registrations, we introduce novel scaling and squaring differ-
entiable layers. Our derivation is generalizable. For example, z can be a low
dimensional embedding representation of a deformation field, or the displace-
ment field itself. Our algorithm can infer the registration of new image pairs in
under a second. Compared to traditional methods, our method is significantly
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faster, and compared to recent learning based methods, our method offers dif-
feomorphic guarantees, and provides natural uncertainty estimates for resulting
registrations.
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