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Abstract. We propose a method to construct patient-specific muscu-
loskeletal model using a template obtained from a high fidelity cadaver
images. Musculoskeletal simulation has been traditionally performed
using a string-type muscle model that represent the line-of-forces of a
muscle with strings, while recent studies found that a more detailed
model that represents muscle’s 3D shape and internal fiber arrangement
would provide better simulation accuracy when sufficient computational
resources are available. Thus, we aim at reconstructing patient-specific
muscle fiber arrangement from clinically available modalities such as CT
or (non-diffusion) MRI. Our approach follows a conventional biomedical
modeling approach which first constructs a highly accurate generic tem-
plate model which is then registered using the patient-specific measure-
ment. Our template is created from a high-resolution cryosectioned vol-
ume and newly proposed registration method aligns the surface of bones
and muscles as well as the local orientation inside the muscle (i.e., mus-
cle fiber direction). The evaluation was performed using cryosectioned
volumes of two cadavers, one of which accompanies images obtained
from clinical CT and MRI. Quantitative evaluation demonstrated that
the mean fiber distance error between the one estimated from CT and
the ground truth was 4.16, 3.76, and 2.45 mm for the gluteus maximus,
medius, and minimus muscles, respectively. The qualitative visual assess-
ment on 20 clinical CT images suggested plausible fiber arrangements
that would be able to be translated to biomechanical simulation.
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1 Introduction

We aim at a patient-specific modeling of musculoskeletal structures for biome-
chanical simulation in pre-operative surgical planning and postoperative rehabil-
itation. While string-type muscle model simplifying each muscle as a few string
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Fig. 1. Workflow of the proposed method. The shape and fiber arrangement of the
target muscle (gluteus maximus in this figure) is obtained from a high-resolution optical
volume of a cadaver specimen. The template is then registered to each subjects CT
or MRI using the proposed non-rigid registration algorithm, from which the statistical
model is created.

elements has been most commonly used in biomechanical simulations (such as
in [12], etc.) by virtue of low computational cost and ease of modeling, 3D volu-
metric muscle models containing the muscle fiber architecture [3,14] have been
investigated to improve accuracy of musculoskeletal simulation when sufficient
computational resource is available. The modeling of muscle fiber arrangement
has been attempted using medical imaging modalities such as ultrasound [15],
diffusion tensor MRI [8], and micro CT [7], the limited field-of-view and long scan
time precludes its use in clinical routine. On the other hand, the biomechanics
community has proposed several method for modeling muscle fibers to achieve
an accurate biomechanical simulation, one of which employs computational fluid
dynamics [6] to obtain a physically plausible non-intersecting streamlines that
connect origin and insertion areas. But the downside is its fidelity to patient-
specific fiber arrangement.

Otake et al. [10] proposed a compromise solution in which a simple 3D geo-
metric pattern representing fiber arrangement (e.g., a cluster of lines in a unit
cube connecting top and bottom face) is spatially mapped to the muscle consid-
ering local orientation inside the muscle derived from the texture of patient’s CT.
Although it successfully modeled patient-specific and physically plausible fiber
arrangement with a high-resolution optical volume, its robustness was limited
especially for muscles with complicated fiber arrangement such as the gluteus
medius in CT, and the authors demonstrated improved accuracy by addition of
manually traced fiber lines, which should be highly operator dependent. Auto-
mated segmentation of musculoskeletal structures has been widely studied [1,11].
Especially, since the emergence of deep neural networks, it is approaching a viable
option in clinical routine. Therefore, in this study, we assumed the segmentation
label of the target bones and muscles are sou available. We propose a method
to model patient-specific muscle fiber arrangement robustly from patient’s med-
ical images such as CT or (non-diffusion) MRI. Our approach follows a con-
ventional biomedical modeling approach which first constructs a highly accurate
generic template model, and then the template is non-rigidly registered to a noisy
patient-specific image. Our template is created from a high-resolution cryosec-
tioned volume [5] using the previously proposed method [10]. The contribution
of this paper is twofold: (1) Introduction of a new cost function containing two
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Fig. 2. High fidelity fiber arrangement templates obtained from optical image volume of
two cadaver specimens in Visible Korean Human data set that were used as the ground
truth in this study. A previously proposed algorithm [10] that fits a fiber template to the
structure tensor field is employed. Tractography is also computed from the structure
tensor field for comparison. The fitted fiber template correctly provided fiber lines that
connect the origin and insertion areas, while tractography is partially disconnected
due to noise in the tensor field. The color in the fiber rendering corresponds to the
orientation at each line segment. X, Y, and Z components of the orientation vector
were assigned to R, G, and B components.

data fitting terms, the surface fitness term and local orientation fitness term, and
(2) evaluation with high-resolution optically acquired cryosection image volumes
of two cadaver specimens. Quantitative evaluation of fiber arrangement is chal-
lenging also in brain tractography since obtaining the ground truth is difficult.
We accomplished a validation with a highly reliable ground truth by using two
series of cryosection images one of them accompanies CT and MR images.

2 Method

2.1 Overview of the Proposed Method

As illustrated in Fig. 1, the proposed method first construct a high fidelity tem-
plate biomechanical model from a high resolution cryosection volume, then it
is adapted to each patient using the information from patient-specific images.
Since a large-scale image database is available for routinely used modalities such
as CT and MR, the method allows statistical analysis of population-specific
biomechanical parameters.
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2.2 Construction of High Fidelity Fiber Arrangement Template
and Preprocessing of Patient-Specific Images

Figure 2 shows the high fidelity fiber arrangement templates that we created
from two optical cryosection image volumes (0.1 mm3/voxel) using the method
previously reported in [10]. As for the patient-specific image, CT or MRI, first,
the regions of target bone and muscles are segmented. Although we used labels
manually traced in 20 clinical CTs in this study, we confirmed with a larger scale
CT database that automation of the segmentation using these 20 training data
sets is viable with a deep neural network approach. The muscle attachment area
was obtained using the method proposed by Fukuda et al. in [4]. Then, similar
to [10], we obtain the local orientation within a neighborhood at each voxel
by computing the eigenvector corresponding to the smallest eigenvalue of the
gradient-based structure tensor [2]. A Gaussian filter (with standard deviation
of σ1) was applied to the image before computing gradient to suppress noise and
after computing the gradient (with std. of σ2) to smooth the tensor field. σ1 =
0.5 mm and σ2 = 2 mm were experimentally found to be effective in this method
and used in the experiment below.
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Fig. 3. The proposed non-rigid registration method with a cost function consisting of
surface distance error and structure tensor vector field error.

2.3 Non-rigid Registration Using Shape and Local Orientation Cost

The proposed non-rigid registration and a representative registration result were
illustrated in Fig. 3. The cost function consists of three terms, namely surface
distance term (C1), vector field difference term (C2), and smoothness penalty
term (g).

Θ̂ = arg min
Θ

(1 − α)C1(Θ) + αC2(Θ) + λg(Θ) (1)

The parameter α changes the balance between the two data fitness terms and λ
is the regularization weight. Each term is as follows.

C1(Θ) =
1

Nm

∑

i∈Sm

min
j∈Sf

||pm,i(Θ) − pf,j || + 1
Nf

∑
j∈Sf

min
i∈Sm

||pm,i(Θ) − pf,j ||
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where Sm, Nm and Sf , Sm represents the surface and the number of vertices
of moving and fixed surfaces, respectively. In this study, the moving and fixed
surfaces contain three objects, the pelvis, femur, and the target muscle. pm,i and
pf,i represents ith vertex in Sm and Sf , respectively. This term represents the
symmetric surface distance.

C2(Θ) = −Dice(Ωf , Ωm)
1
N

∑
i,j,k∈Ωf∩Ωm

G(θi,j,k(Θ));σcost)

where Ωf and Ωm represent the regions covered by the moving and fixed surface,
and θi,j,k represents the angular difference between vectors in the two vector
fields at the voxed indexed by (i, j, k). G(A;σ) is a Gaussian function with a
standard deviation of σ. g(Θ) is a commonly used smoothness penalty term [13]
represented as follows.
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2.4 Evaluation Method

The cadaveric data set that we used in this study [5] includes optical image
volumes of two specimens, and one of the specimen (denoted as subject1 in the
figures) accompanies images obtained by clinical CT and MRI (voxel size: 1.0
mm3). Thus, as shown in Fig. 4, we constructed a high fidelity template from
the optical image of subject2 and registered to CT and MRI of subject1 and
evaluated the result using a ground truth obtained from the optical image of
subject1. As for the error metric, we employed the fiber distance error which
is defined as the mean distance between pairs of corresponding points on the
nearest fiber [9], which is one of the metrics used in evaluation of white matter
fibers in brain tractography.

3 Results

Figures 5 and 6 show the results of fiber arrangement of the gluteus maximus,
medius, and minimus muscles computed from CT and MRI using the proposed
non-rigid registration. Figure 5 shows quantitative evaluation in subject1 where
the accurate ground truth obtained from the optical image was available. The
proposed method was compared also with two previous methods that 1) used
the grid fitting to the CT [10] (denoted as Previous method 2 in the figure) and
2) used computational fluid dynamics [6] that computes fiber arrangement from
its surface shape (denoted as Previous method 2 in the figure). Fiber distance
error for the gluteus medius muscle (Fig. 5a) for the estimation from CT, MRI,
previous method 1, and 2, were 3.76 ± 1.24 mm, 3.26 ± 0.85 mm, 4.15 ± 2.29
mm, 8.72 ± 4.40 mm, respectively. The previous method 1 had larger number
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Fig. 4. Illustration of the evaluation scheme used in this study. Two cadaveric speci-
mens are used. A high fidelity muscle fiber template obtained from an optical volume
of one subject (subject 2) was registered to CT and MR images of the other subject
(subject 1). The registration accuracy was evaluated by fiber distance error metric
using the ground truth obtained from the optical volume of subject 1.
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Fig. 5. Results of quantitative evaluation using the ground truth obtained from high
resolution optical volume. The fiber arrangements estimated from CT and MRI in
gluteus (a) medius, (b) maximus, and (c) minimus muscles were illustrated by the
colormap corresponding to the fiber distance error from the ground truth.

Patient #1 Patient #2 Patient #3 Patient #4

Fig. 6. Results of muscle fiber arrangement modeling of the gluteus maximus, and
medius muscles of four representative patients (out of 20 patients analyzed in the
study). The color corresponds to the local orientation (see the caption of Fig. 2)
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of outliers in the anterior region (right side in the figure). We found that in
this region of this subject, the amount of fat tissue was relatively low and there
was almost no texture, resulting in a highly noisy structure tensor vectors. The
proposed method was robust in this region owing to the cost function containing
the fitness of the bone surface, where the attachment areas lay on, in addition
to the vector field fitness. The previous method 2 showed larger error overall,
suggesting that the information from internal texture contributed significantly.
The fiber distance errors for CT and MRI were 4.16± 2.34 mm, and 4.51± 2.38
mm, for the gluteus maximus and 2.45 ± 0.76 mm, and 1.77 ± 0.70 mm, for
the gluteus minimus, respectively. Since the fiber distance error computes the
average distance with the nearest fiber, the shorter fibers tend to show smaller
error. Since fiber length is different between the muscles, direct comparison is
difficult, but estimation from MRI shows smaller error in the gluteus medius,
and minimus, and almost the same for the gluteus maximus. The results in Fig. 6
was obtained from clinical CTs, where no ground truth is available. Qualitative
visual evaluation on the clinical CTs shown in Fig. 6 suggested a reasonable
reconstruction for the three muscles.

4 Discussion and Conclusion

We proposed a non-rigid registration method with a cost function containing
both surface distance error and the vector field angle error, and quantitatively
evaluated its accuracy and demonstrated applications in patient-specific biome-
chanical modeling using a database of 20 clinical CTs. Compared to the previ-
ously proposed grid fitting method [10] that takes account for only the vector
field, the proposed method was found to be more robust in the area with higher
noise in the structure tensor field. Using the robust registration method, we
proposed an approach to patient-specific biomechanical modeling using the high
fidelity generic template model constructed from cadaveric images. One of the
limitations in current study is that the evaluation used only two specimens only
one of which has clinical CT and MRI. Enlarging the template database as well
as introducing a new method to obtain the ground truth from clinical CTs are
our ongoing work. Another potential future work is the statistical analysis using
a large-scale CT database. The robustness of the proposed registration method
even in the presence of noise in clinical CT would become a strong advantage in
the large-scale cohort analysis of biomechanical parameters, since CT is the most
common modality especially in the orthopedic surgery where the biomechanical
simulation is most profitable.
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