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Abstract. Typical segmentation methods produce a single optimal solu-
tion and fail to inform about (i) the confidence/uncertainty in the object
boundaries or (ii) alternate close-to-optimal solutions. To estimate uncer-
tainty, some methods intend to sample segmentations from an associated
posterior model using Markov chain Monte Carlo (MCMC) sampling or
perturbation models. However, they cannot guarantee sampling from the
true posterior, deviating significantly in practice. We propose a novel
method that guarantees exact MCMC sampling, in finite time, of multi-
label segmentations from generic Bayesian Markov random field (MRF)
models. For exact sampling, we propose Fill’s strategy and extend it to
generic MRF models via a novel bounding chain algorithm. Results on
simulated data and clinical brain images from 4 classic problems show
that our uncertainty estimates gain accuracy over the state of the art.
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1 Introduction and Related Work

Accounting for uncertainty in automated segmentation results can improve risk
analysis in clinical procedures (e.g., neurosurgery [1], radiotherapy [8]) and relia-
bility in clinical diagnosis and studies. Segmentation methods, e.g., using expec-
tation maximization (EM) and hidden Markov random fields (MRFs) or graph
cuts, typically produce a single optimal solution, failing to inform about object-
boundary uncertainty or alternate close-to-optimal solutions.

For a small class of MRF models that allow segmentation inference via graph
cuts, efficient methods exist to exactly estimate label uncertainty [6]. For general
MRFs, typical uncertainty estimation methods approximate modeling or sam-
pling. While [3] uses (non-exact) Markov chain Monte Carlo (MCMC) to sample
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nonparametric curves, [8] uses a Gaussian-process approximation for label dis-
tributions. In tumor segmentation, [1] approximates the Gumbel perturbation
models in [9] to sample from the underlying Bayesian MRF. For multiatlas seg-
mentation, [2] uses bootstrap resampling to learn nonparametric regression mod-
els and error-convergence rates indicating voxelwise uncertainty for a population
of images (not a specific image). In contrast, we propose the perfect/exact MCMC
paradigm and a novel perfect-MCMC sampler for generic Bayesian MRFs, to
estimate uncertainty in multilabel and multiatlas segmentation.

For uncertainty estimation in image registration, while some methods [7]
use bootstrap data resampling to approximate the data distribution (unlike the
posterior), others use MCMC sampling. Unlike typical MCMC [3] that is only
asymptotically exact and can suffer from insufficient burn-in (fixing one very
large burn-in for all tasks makes computational costs exorbitant), we guarantee
exact MCMC in finite time and eliminate adhoc heuristics to determine burn-in.

We introduce a new framework for uncertainty estimation in segmentation by
relying on perfect MCMC sampling, in finite time, from generic Bayesian MRF
models. We propose to perfect-sample label images: (i) by combining coupling-
from-the-past (CFTP) [10] with the bounding-chain (BC) [5] scheme, called
CFTP-BC, and, more importantly, (ii) by extending Fill’s algorithm (FA) [4]
using the BC scheme, called FA-BC. Results on clinical brain images from 4
applications (segmenting tissues, subcortical structures, tumor, lobes) show that
our uncertainty estimates gain accuracy over the state of the art.

2 Methods

We describe our frameworks for perfect MCMC sampling to estimate uncertainty.

MCMC Sampling. Let observed image y, with V voxels, be generated from
(i) a hidden label image x that is modeled by MRF X with prior probability
mass function (PMF) P (X) and (ii) a likelihood model P (Y |X). MRF X has a
neighborhood system N := {Nv}Vv=1, where Nv is the set of voxels neighboring
voxel v. To sample from the posterior Q(X) := P (X|y), MCMC methods con-
struct a Markov chain M as the MRF sequence X1,X2, · · · ,Xt, · · · , an associ-
ated transition kernel K(·, ·) with P (Xt+1|Xt) := K(Xt, ·), and stationary PMF
Q(X). Typically, M is positive, recurrent, and aperiodic (such a chain is called
ergodic), thereby having a unique stationary PMF and that PMF being Q(X).
M also typically satisfies detailed balance, or reversibility, which implies that
kernel K(·, ·) also applies to the time-reversed chain. The Gibbs sampler is a
Metropolis-Hastings MCMC sampler (with an ergodic reversible Markov chain);
it iteratively selects a random voxel and draws from its local conditional PMF.

Coupling from the Past (CFTP) for Perfect MCMC Sampling. Gibbs
sampler, and typical Metropolis samplers, need to run infinitely long to guarantee
draws from the associated stationary PMF Q(X). CFTP [10] theoretically guar-
antees the sampled state to be from the desired PMF Q(X) by ensuring that any
long-running Markov chain, irrespective of its initial state, would have reached
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the chosen sampled state, using a specific sequence of interstate-transition maps.
CFTP tracks coupled parallel chains, one chain started in each possible state of
the state space, until all of them coalesce to a single state.

Theorem 1. Propp-Wilson [10]: The CFTP algorithm terminates in finite time
and returns a draw from the stationary distribution of the Markov chain.

Interpretation: Markov chain ergodicity implies, ∀ states x, a non-zero probabil-
ity > ε > 0 of reaching x, from any state x′ in a finite number of transitions Nx.
For a given instance of a sequence of interstate-transition maps (or, equivalently,
random numbers) in the Markov chain, coalescence to some state must occur for
some finite number of transitions M ≥ maxx Nx. Indeed, the probability of coa-
lescence failing to occur → 0 as M → ∞. M is almost-surely finite because the
probability of coalescence in any finite number of transitions is positive. Assume
that coalescence occurred when the chain ran from time t = −M to t = 0, using
a specific sequence of transition maps. A chain running from −∞ to 0 that uses
this sequence of transition maps within [−M, 0] reaches the same state at t = 0.
Because the state reached by a chain running infinitely long is a draw from the
stationary PMF Q(X), the coalesced state at t = 0 is a draw from Q(X).

For some PMFs Q(X), the Gibbs sampler is monotonic [10] where transitions
of coupled chains preserve a partial order on the states, and this allows CFTP
to simplify parallel-chain tracking to tracking only two chains, each started from
one of the extremal states (minimum and maximum) under the partial order.
While monotonicity holds for the special case of the ferromagnetic Ising model,
it fails to apply to many popular binary-MRF/ Potts models. For general cases,
perfect sampling can use the bounding chain principle [5] as we propose next.

CFTP with Bounding Chain (CFTP-BC). For Gibbs sampling, CFTP-BC
uses the following modified sampler G to draw label Xv, at each voxel v, from
the conditional PMF P (Xv|x−v) conditioned on all other label values x−v.

1. Draw label l uniformly from the label set L := {1, · · · , L}. Draw u ∼ U(0, 1).
2. If u < P (Xv = l|x−v), set Xv := l and terminate; otherwise, iterate.

Provably, ∀l, the probability of G terminating with Xv = l is P (Xv = l|x−v).
For the Gibbs sampler relying on G, the bounding chain algorithm [5] effi-

ciently tracks the states of coupled parallel chains (monotone or not). CFTP-BC
uses this tracking strategy to detect coalescence. Consider a new kind of a Markov
chain M̊ with state space (2L)V , where 2L is the set of subsets of L. For M̊,
each state, say, X̊, contains a set of states X ∈ LV . M̊ is associated with a state
sequence X̊1, X̊2, · · · where the transition kernel K̊(·, ·) on X̊ is defined in terms
of the transition kernel K(·, ·) acting on each state X ∈ X̊.

Definition 1. Huber [5]: M̊ is a bounding chain for M if there exists a coupling
between M̊ and M such that Xt

v ∈ X̊t
v,∀v, =⇒ Xt+1

v ∈ X̊t+1
v ,∀v.

Consider all coupled parallel chains M running G and visiting voxel v at time
t. The bounding chain M̊ keeps track of the set X̊v ⊆ L of possible labels,
at each v, across all chains M at any given time; it initializes X̊v := L and
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detects coalescence when |X̊v| = 1,∀v. Each chain M has its conditional PMFs
P (Xv|x−v), dependent on MRF-neighborhood configurations xNv

. For each label
l, let the minimum and maximum of conditional probabilities P (Xv = l|x−v),
over all chains M, be Pmin(Xv = l|x−v) and Pmax(Xv = l|x−v), computed over
all possible neighborhood label configurations in the cross-product space X̊w1 ×
X̊w2 × · · · over all wi ∈ Nv. Partition the set of all chains M into equivalence
classes, based on possible MRF-neighborhood label values xNv

, within which
Gibbs samplers G behave identically at voxel v. Now do the following at voxel v:

1. In the bounding chain M̊, initialize the set of possible labels X̊v := ∅.
2. Draw l uniformly from the label set L. Draw u ∼ U(0, 1).
3. If u > Pmax(Xv = l|x−v), then no chain M has changed state. So, do nothing.
4. If u ∈ [Pmin(Xv = l|x−v), Pmax(Xv = l|x−v)], then some of the equivalence

classes of chains M have set Xv ← l. So, insert label l into set X̊v.
5. If u < Pmin(Xv = l|x−v), then all chains M set Xv ← l, indicating “local”

coalescence that is a sufficient condition for every chain M to have undergone
at least one transition where sampler G terminated. So, insert l into X̊v. Exit.
M̊ avoids explicitly tracking a possibly exponential number of equivalence
classes, but allows a possibly looser bound (larger |X̊v|) resulting from some
chains M running G multiple times and including all sampled labels in X̊v.

6. Repeat from Step 2.

When, ∀v, set X̊v is a singleton, say, {x̂v}, then all Markov chains M have
coalesced to label image x̂ that is guaranteed to be a draw from the stationary
PMF Q(X). Ergodicity of M ensures coalescence almost-surely in finite time.

Fill’s Algorithm (FA) for Perfect MCMC Sampling. A limitation of
the CFTP strategy proposed in [10], including monotone-chain CFTP [10] and
CFTP-BC [5], is that the CFTP running time M and the sampled state ̂X
are dependent variables. M is unbounded whose order of magnitude is typically
unknown a priori. So, some states x require a very long run from −M to 0, with
large unpredictable M . Impatient users who abort CFTP when M starts becom-
ing large, add bias to the sampled states’ PMF. In contrast, FA [4] makes the
sampled state independent of the running time; it relies on acceptance-rejection
(AR) sampling. The FA in [4] works only for monotone M, as below.

1. Choose a random time T > 0 and a random label image XT := z.
2. Run a Markov chain M from T → 0, with initial XT := z, reaching X0 := x.
3. Let ST (x, z) be the event that a Markov chain starting at x ran for time

T to reach z; this occurs for some set of pseudo-random number sequences
Ux→z. Let CT (z) be the event that coupled parallel chains ran for time T and
coalesced in z; this occurs for some set of pseudo-random number sequences
U ′ ⊆ Ux→z. With probability P (CT (z)|ST (x, z)), accept x as a draw from
the stationary PMF Q(X) and terminate; otherwise iterate from Step (1).

P (CT (z)|ST (x, z)) is computationally intractable, but AR decisions can be made
by (i) simulating a �x→z ∈ Ux→z to ensure ST (x, z) occurs and (ii) tracking
coupled parallel chains, transitioning as per �x→z, to detect if CT (z) occurs.
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Theorem 2. Fill [4]: Fill’s algorithm, with constrained monotone chains, guar-
antees that the sampled state is from the stationary PMF Q(X).

This is true because the underlying AR sampler generates a proposal x from
the T -step transition kernel KT (z, ·) and, knowing that MzK

T (z, ·) is an upper
bound for the stationary PMF Q(·) for Mz := Q(z)/P (CT (z)), accepts the
proposed x with probability Q(x)/(MzK

T (z, x)) that equals P (CT (z)|ST (x, z)).

Fill’s Algorithm with Bounding Chain (FA-BC). Previous works limit
Fill’s algorithm to monotone chains that apply to a very small class of PMFs
Q(X); for monotone chains, detecting CT (z) constrained on ST (x, z) needs the
tracking of only two extremal states. We generalize Fill’s algorithm to generic
Bayesian MRFs by efficiently tracking constrained parallel arbitrary chains using
a novel constrained bounding chain algorithm, as follows.

At time t and voxel v, for each label l, let Pmin(Xt
v = l|xt

−v) and Pmax(Xt
v =

l|xt
−v) be defined as before. Let l∗ be the label at voxel v for time t+1 along the

Markov chain path x → z. At time t, let P ∗(Xt
v = l∗|xt

−v) be the label probability
conditioned on neighboring labels for the path x → z. Clearly, Pmin(Xt

v =
l|xt

−v) ≤ P ∗(Xt
v = l∗|xt

−v) ≤ Pmax(Xt
v = l|xt

−v). Initialize t := 0, x0 := x.

1. At time t, do the following at each voxel v:
(a) In the bounding chain M̊, initialize the set of possible labels X̊v := ∅.
(b) Draw l uniformly from the label set L.
(c) If l �= l∗, draw u ∼ U(P ∗(Xt

v = l∗|xt
−v), 1); otherwise draw u ∼ U(0, 1).

This sampling strategy simulates �x→z ∼ Ux→z, ensuring that xt transi-
tions to xt+1 on the path x → z, thereby leading to ST (x, z). The next
steps track parallel coupled chains to detect if CT (z) occurs for �x→z.

(d) If u > Pmax(Xt
v = l|xt

−v), then no chain M changes state. Go to Step 1b.
(e) If u ∈ [Pmin(Xt

v = l|xt
−v), P

max(Xt
v = l|xt

−v)], then some chains M accept
label l. Insert l into X̊v. Go to Step 1b.

(f) If u < Pmin(Xt
v = l|xt

−v), then all chains M set Xv = l. Insert l into X̊v.
Go to Step 1a to process a new voxel.

2. Increment t by 1. If t < T , repeat Step 1. If t = T and coalescence has
occurred, i.e., |X̊v| = 1,∀v, then accept the initial x as a draw from Q(X).

Theorem 3. Our modification of the Fill’s algorithm, with constrained bounding
chain, guarantees that the sampled state is from the stationary PMF Q(X).

Proof. We show that our random number generation scheme in Step 1c ensures
ST (x, z) by simulating a �x→z ∈ Ux→z. At time t and voxel v, let E∗ be the
event that, for the chain going from x → z, the label at voxel v at time t+1 is l∗.
Let the x → z chain’s unconstrained modified Gibbs sampler be G∗ and the label
probabilities be P ∗(Xt

v = l|xt
−v). For E∗ to occur, G∗ accepted label l∗ in some

iteration i. In any iteration, G∗ picked some l and some random u. Given E∗: if
G∗ picked an l �= l∗, then u must have been within [P ∗(Xt

v = l|xt
−v), 1]; otherwise

u could have been anywhere within [0, 1]. Now consider parallel coupled chains,
one starting at each possible state, running sampler G for T transition steps.
At iteration i, if G picks l �= l∗, then G must pick u within [P ∗(Xt

v = l|xt
−v), 1]
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because, otherwise, the chain started at x can incorrectly accept l �= l∗ and E∗

can fail to occur. At iteration i, if G picks l = l∗, then G can pick u within [0, 1],
leading to a non-zero probability for the chain started at x accepting l∗ and
leading to E∗. Steps 1d–1f track all chains, as in CFTP-BC, to detect CT (z) for
the chosen �x→z. The result then follows from Theorem 2. ��

Exact Sampling to Estimate Uncertainty in Segmentation. We apply
our FA-BC perfect-MCMC sampler to estimate uncertainty in Bayesian seg-
mentation that models the label image prior as a hidden MRF X with the Potts
model. We use FA-BC (i) during parameter estimation via EM, in the E step for
Monte Carlo sampling label image X from its posterior, and (ii) after parameter
estimation, to estimate uncertainty by sampling label maps from the poste-
rior, given optimal parameters, and measuring their variability per voxel. We
apply to 4 classic segmentation problems, in brain magnetic resonance imaging
(MRI), with different likelihood models: (i) EM segmentation of tissues with
mild lesions, with a Gaussian mixture model (GMM) for the intensities. (ii) EM
segmentation of tumor, with a 2-component GMM for the tumor and non-tumor
intensity patches on multimodal MRI, (iii) multiatlas segmentation of subcorti-
cal structures, and (iv) multiatlas segmentation of 4 lobes. Both (iii) and (iv) use
a basic voxelwise nonparametric label-likelihood model for proof-of-concept, as
follows. Let the multiatlas database D := {zj , sj}Jj=1 have template MRI images
zj paired with label images sj . At voxel i, the observed-image patch yNi

has
likelihood P (yNi

|Xi = l,D) :=
∑J

j=1 1l(s
j
i )G(y̆Ni

; z̆jNi
, σ2I)/

∑J
j=1 1l(s

j
i ) where

1l(a) = 1 if l = a (0 otherwise), I is the identity matrix, σ2 the Gaussian kernel
variance, and y̆Ni

and s̆jNi
are normalized patches with mean 0 and variance 1.

3 Results and Discussion

We show results on simulated data and on 4 classic brain-MRI analyses for 3
methods: (i) ours, (ii) approximate Gumbel perturbation model (aGPM) [1],
(iii) Gibbs sampler with limited burn-in. For posterior-sampled label images
(sample size 103), we compute mean and standard deviation (SD) per voxel (for
the multi-category case, we generalize SD by square-root of unalikeability.

Validation on Simulated Data. The aGPM approximation of the true sam-
pling PMF (in [9], which is intractable) can be severe (Fig. 1(a)–(c)), leading to a
strong bias in the empirical mean estimate near edges (Fig. 1(d)). Our empirical
mean estimate (Fig. 1(d)) is much closer to ground truth.

Results on Clinical Brain MRI. For many segmentation tasks, typical
maximum-a-posteriori (MAP) segmentations can be very misleading by failing to
expose regions with high uncertainty, e.g., (i) in subcortical structures, the hip-
pocampus tail region (Fig. 2), (ii) in tumor, the edema regions (Fig. 3), (iii) in
tissues, regions with mild lesions in white matter (Fig. 4). In these cases, the
empirical means and SDs resulting from posterior-sampled label images are far
more informative than the MAP estimate. However, in all these cases, unlike
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(a) (b) (c) (d) (e)

Fig. 1. Validation on Simulated Data: 128-voxel 1D image, 2 labels. Differences
between ideal Gumbel perturbations γ in [9] (intractable for label-image sampling)
and their tractable approximations γ̂ in aGPM [1]: (a) For a label image l, empirical
histogram for γ̂l :=

∑128
i=1 γli

i , as per aGPM’s notation, is almost Gaussian (central
limit theorem), deviating significantly from Gumbel. (b)–(c) For label images l1 and l2,

scatter between aGPM draws γ̂l1 and γ̂l2 (both using same sample for γ•
i ) deviates from

that between Gumbel draws γl1 and γl2 . (d)–(e) Sample mean and SD (voxelwise) of
label images drawn from hidden-MRF posterior for aGPM [1] and our FA-BC sampler,
averaged over multiple simulated image instances with different noise instances.

(a) Data (b) Ours (c) aGPM (d) Gibbs (i) Data (j) Ours

(e) MAP (f) Ours (g) aGPM (h) Gibbs (k) aGPM (l) Gibbs

Fig. 2. Clinical brain MRI: Multiatlas segmentation, subcortical structures

FLAIR T2 MAP Ours aGPM Gibbs Ours aGPM Gibbs

Fig. 3. Clinical multimodal brain MRI: Tumor segmentation.

our approach, both aGPM and Gibbs significantly underestimate the label SDs.
Our FA-BC clearly improves over CFTP-BC [5] (Fig. 4) when, unlike our FA-
BC, for large values of the smoothness parameter (say, β) in the Potts-MRF
model, CFTP-BC takes far too many transition steps T and computation times,
or virtually fails to terminate (for β > 0.66). For multiatlas hippocampus
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T1 MAP Ours aGPM Gibbs Ours aGPM Gibbs

Fig. 4. Clinical brain MRI, simulated mild lesion: Tissue segmentation.

(a) Ours (b) aGPM (c) Gibbs (d) Ours (e) aGPM (f) Gibbs

Fig. 5. Clinical brain MRI: Multiatlas segmentation of lobes.

segmentation (Fig. 2(b)–(d)), compared to our method, aGPM and Gibbs
severely underestimate the label means as well. For tissue segmentation (Fig. 4),
within the mild lesion with intensities between those of gray and white matter,
our label mean is halfway between the label values of gray and white matter
and indicates a greater uncertainty. In contrast, aGPM (or Gibbs) labels the
lesion more confidently as gray (or white) matter, which is undesirable. For mul-
tiatlas multimodal-MRI tumor segmentation (Fig. 3), tissue segmentation with
mild lesions (Fig. 4), and lobe segmentation (Fig. 5), aGPM and Gibbs severely
underestimate label SDs, unlike our method that theoretically and practically
guarantees sampled label images from the true posterior.

Computation Times: Gibbs’s convergence time varies severely with the MRF
model and the data, making it very difficult to predict burn-in. With a safe-side
burn-in of 5000, as per the plot in Fig. 4, our FA-BC is 10–20× faster.

Conclusion. We introduced a new framework for uncertainty estimation in seg-
mentation relying on perfect MCMC sampling of label images from their poste-
riors, defined using a generic MRF model. Our FA-BC extended Fill’s algorithm
to use a bounding-chain scheme, improving theoretically and practically over the
state of the arts for (i) uncertainty estimation, e.g., aGPM and naive Gibbs, and
(ii) perfect sampling, e.g., CFTP-BC, for analyzing simulated data and clinical
brain MRI (segmenting tissues, subcortical structures, tumor, lobes).
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