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Abstract. Recent studies found that in voxel-based neuroimage analy-
sis, detecting and differentiating “procedural bias” that are introduced
during the preprocessing steps from lesion features, not only can help
boost accuracy but also can improve interpretability. To the best of our
knowledge, GSplit LBI is the first model proposed in the literature to
simultaneously capture both procedural bias and lesion features. Despite
the fact that it can improve prediction power by leveraging the proce-
dural bias, it may select spurious features due to the multicollinearity in
high dimensional space. Moreover, it does not take into account the het-
erogeneity of these two types of features. In fact, the procedural bias and
lesion features differ in terms of volumetric change and spatial correlation
pattern. To address these issues, we propose a “two-groups” Empirical-
Bayes method called “FDR-HS” (False-Discovery-Rate Heterogenous
Smoothing). Such method is able to not only avoid multicollinearity,
but also exploit the heterogenous spatial patterns of features. In addi-
tion, it enjoys the simplicity in implementation by introducing hidden
variables, which turns the problem into a convex optimization scheme
and can be solved efficiently by the expectation-maximum (EM) algo-
rithm. Empirical experiments have been evaluated on the Alzheimer’s
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Disease Neuroimage Initiative (ADNI) database. The advantage of the
proposed model is verified by improved interpretability and prediction
power using selected features by FDR-HS.
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1 Introduction

In recent years, the issue of model interpretability attracts an increasing atten-
tion in voxel-based neuroimage analysis of disease prediction, e.g. [5,9]. Exam-
ples include, but not limited to, the preprocessed features on structural Magnetic
Resonance Imaging (sMRI) images that usually contain the following voxel-wise
features: (1) lesion features that are contributed to the disease (2) procedu-
ral bias introduced during the preprocessing steps and shown to be helpful in
classification [3,12] (3) irrelevant or null features which are uncorrelated with
disease label. Our goal is to stably select non-null features, i.e. lesion features
and procedural bias with high power/recall and low false discovery rate (FDR).

The lesion features have been the main focus in disease prediction. In demen-
tia disease such as Alzheimer’s Disease (AD), such features are thought to be
geometrically clustered in atrophied regions (hippocampus and medial tempo-
ral lobe etc.), as shown by the red voxels in Fig. 1(A). To explore such spatial
patterns, multivariate models with Total Variation [10] regularization can be
applied by enforcing smoothness on the voxels in neighbor, e.g. the n2GFL [15]
can stably identify the early damaged regions in AD by harnessing the lesions.

Recently, another type of features called procedural bias, which are intro-
duced during the preprocessing steps, are found to be helpful for disease predic-
tion [12]. Again, taking AD as an example, the procedural bias refer to the mis-
takenly enlarged Gray Matter (GM) voxels surrounding locations with cerebral
spinal fluid (CSF) spaces enlarged, e.g. lateral ventricle, as shown in Fig. 1(A).
This type of features has been ignored in the literature until recently, when the
GSplit LBI [12] was targeted on capturing both types of features via a split of
tasks of TV regularization (for lesions) and disease prediction with general linear
model (with procedural bias). By leveraging such bias, it can outperform models
which only focus on lesions in terms of prediction power and interpretability.

However, GSplit LBI may suffer from inaccurate feature selection due to the
following limitations in high dimensional feature space:1: (1) multicollinearity:
high correlation among features in multivariate models [14]; (2) “heterogenous
features”: the procedural bias and lesion features differ in terms of volumetric
change (enlarged v.s. atrophied) and particularly spatial pattern (surroundingly
distributed v.s. spatially cohesive). Specifically, the multicollinearity could select
spurious null features which are inter-correlated with non-nulls. Moreover, GSplit

1 Please refer supplementary material for detailed and theoretical discussion.
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LBI fails to take into account the heterogeneity since it enforces correlation on
features without differentiation. Such problems altogether may result in inac-
curate selection of non-nulls, especially procedural bias. As shown in Fig. 1(B)
and Table 2, the procedural bias selected by GSplit LBI are unstably scattered
on regions that are less informative than ventricle. Moreover, the collinearity
among features tends to select a subset of features among correlated ones, as
discussed in [16]. Such a limitation leads to the ignorance of many meaningful
regions (such as medial temporal lobe, thalamus etc.) of GSplit LBI in selecting
lesion features, as identified by the purple frames of FDR-HS in Fig. 1(B). More-
over, the two problems above may get worse as dimensionality grows. In our
experiments with a fine resolution (4 × 4 × 4 of 20,091 features), the prediction
accuracy of GSplit LBI deteriorates to 89.77% (as shown in Table 3), lower than
90.91% reported in [12] with a coarse resolution (8 × 8 × 8 of 2,527 features).

A B

Fig. 1. A: the features selected by FDR-HS (green denotes procedural bias; red denotes
lesion features which are geometrically clustered) B: comparison with GSplit LBI

To resolve the problems above, we propose a “two-groups” empirical Bayes
method to identify heterogenous features, called FDR-HS standing for “FDR
Heterogenous smoothing” in this paper. As a univariate FDR control method,
it avoids the collinearity problem by proceeding voxel-by-voxel, as discussed
in [7]. Moreover, it can deal with heterogeneity by regularizing on features with
different levels of spatial coherence in different feature groups, which remedies the
problem of losing spatial patterns that most conventional mass-univariate models
suffer from, such as two sample T-test, BHq [4] and LocalFDR [7]. By introducing
a binary latent variable, our problem turns into a convex optimization and can
be solved efficiently via EM algorithm like [13]. The method is applied to a voxel-
based sMRI analysis for AD with a fine resolution (4×4×4 of 20,091 features).
As a result, our proposed method exhibits a much stabler feature extraction
than GSplit LBI, and achieves much better classification accuracy at 91.48%.

2 Method

Our dataset consists of p voxels and N samples {xi, yi}N
1 where xij denotes

the intensity value of the jth voxel of the ith sample and yi = {±1} indicates
the disease status (−1 denotes AD). The FDR-HS method is proposed to select
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non-null features. Such method is the combination of “two-groups” model and
heterogenous regularization, which is illustrated in Fig. 2 and discussed below.

Fig. 2. Illustration of FDR-HS model.

Model Formulation. Assuming for each voxel i ∈ {1, ..., p}, the statistic zi is
sampled from the following mixture:

zi ∼
1∑

k=0

p(si = k)p(zi|si = k) = cif1(zi) + (1 − ci)f0(zi), (2.1)

where si is a latent variable indicating if the voxel i belongs to the group of
null features (si = 0) or the group of non-null ones (si = 1), ci = p(si = 1) =
sigmoid(βi) = eβi/

(
1 + eβi

)
and zi = Φ−1 (FN−2(ti)) with ti computed by two-

sample t-test. Correspondingly, f0(·) is density function of nulls, i.e. uncorrelated
with AD and f1(·) is that of non-nulls, i.e. procedural bias and lesions. The loss
function can thus be defined as negative log-likelihood of zi:

�(β) = −
N∑

i=1

log
(

eβi

1 + eβi
f1(zi) +

1
1 + eβi

f0(zi)
)

(2.2)

which can be viewed as logistic regression (when f0 and f1 are replaced with
binaries, as (2.6)) with identity design matrix since (2.1) proceeds voxel-by-voxel.
Hence, it does not have the problem of multicollinearity.

Selecting Features. To select features, we compute the posterior distribution
of si conditioned on zi and β̂i (estimated βi) and features with

p(si = 0|zi, β̂i) =
(1 − ĉi)f0(zi)

ĉif1(zi) + (1 − ĉi)f0(zi)
< γ

(
ĉi = e

̂βi/
(
1 + e

̂βi

))
(2.3)

are selected. The γ ∈ (0, 1) is pre-setting threshold parameter.

Heterogenous Spatial Smoothing. However, (2.1) may lose spatial structure
of non-nulls, especially lesion features. Besides, note that the procedural bias
and lesion features are heterogenous in terms of volumetric change and level
of spatial coherence. Hence, to capture the spatial structure of heterogenous
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features, we split the graph of voxels which denotes as G2 into three subgraphs,
i.e. G = G1 ∪ G2 ∪ G3 with:

G1 = (V1,E1) , V1 = {i : zi ≤ 0}, E1 = {(i, j) ∈ E : zi ≤ 0, zj ≤ 0} (2.4a)
G2 = (V2,E2) , V2 = {i : zi > 0}, E2 = {(i, j) ∈ E : zi > 0, zj > 0} (2.4b)
G3 = (V3,E3) , V3 = V1 ∪ V2, E3 = {(i, j) ∈ E : zi > 0, zj ≤ 0} (2.4c)

where G1 denotes the subgraph restricted on enlarged voxels (procedural bias
since -1 denotes AD); G2 denotes the subgraph restricted on degenerate vox-
els (lesion features); G3 denotes the bipartite graph with the edges connecting
enlarged and degenerate voxels. The optimization function can be redefined as:

g(β) = �(β) + λpro‖DG1β‖1 + λles‖DG2β‖1 + λpro-les‖DG3β‖1 (2.5)

where DGk
β =

∑
(i,j)∈Ek

βi − βj for k ∈ {1, 2, 3} denote graph difference
operator on Gk=1,2,3. By setting the group of regularization hyper-parameters
{λpro, λles, λpro-les} with different values, we can enforce spatial smoothness on
three subgraphs at different level in a contrast to the traditional homogeneous
regularization in [13]. The choice of each hyper-parameter, similar to [13], it is
a trade-off between over-fitting and over-smoothing. Too small value tends to
select features more than needed, while too large value will oversmooth hence
the features are less clustered. Note that lesion features are more spatially coher-
ent than procedural bias and they are located in different regions, the reasonable
choice of regularization hyper-parameters tend to have λles ≤ λpro ≤ λpro-les.

Optimization. Note that the function (2.5) is not convex. Hence we adopted
the same idea in [13] that introduced the latent variables si and = 1 if zi ∼ f1(z)
and 0 if zi ∼ f0(z). The �(β) and g(β) are modified as:

�(β, s) =
N∑

i=1

{
log

(
1 + eβi

) − siβi

}
(2.6)

g(β, s) = �(β, s) + λpro‖DG1β‖1 + λles‖DG2β‖1 + λpro-les‖DG3β‖1 (2.7)

To solve (2.7), we can implement Expectation-Maximization (EM) algorithm to
alternatively solve β and s. Suppose currently we are in the (k + 1)th iteration.
In the E-step, we can estimate si by expectation value conditional on (βk, zi):
s̃i = E(si|βk, zi) = ck

i f1(zi)

ck
i f1(zi)+(1−ck

i )f0(zi)
.

In the M-step, we plug s̃i into (2.7), denote D̃G =
[
DGT

1
, λles

λpro
DGT

2
,

λpro-les

λpro

DGT
3

]T

and expand �(β|s̃k) using a second-order Taylor approximation at the

βk. Then the M-step turns into a generalized lasso problem with square loss:

min
β

1
2
‖ỹ − X̃β‖22 + λpro‖D̃Gβ‖1 (2.8)

2 Here G = (V ,E), where V is the node set of voxels, E is the edge set of voxel pairs
in neighbor (e.g. 3-by-3-by-3).
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where X̃ = diag{√
w1, ...,

√
wp} and ỹi =

√
wi

(
βk

i − �β�(β|s̃k
i )|

βk
/wi

)
with

wi = �2
β�(β|s̃i)|

βk
. Note that X and D̃G are sparse matrices, hence (2.8) can be

efficiently solved by Alternating Direction Method of Multipliers (ADMM) [6]
which has a complexity of O(p log p).

Estimation of f0 and f1. Before the iteration, we need to estimate f0(z) and
f1(z). The marginal distribution of z can be regarded as mixture models with
p components: z ∼ 1

p

∑p
i=1 gi(z), gi(z) = p(si)p(z|si) = cif1(z) + (1 − ci)f0(z)

Hence, the marginal distribution of z is f(z) = c̄f1(z) + (1 − c̄)f0(z), which
is equivalent to LocalFDR [7]. We can therefore implement the CM (Central
Matching) [7] method to estimate {f0(z), c̄} and kernel density to estimate f(z).
The f1(z) can thus be given as (f(z) − f0(z)c̄) /(1 − c̄).

3 Experimental Results

In this section, we evaluate the proposed method by applying it on the ADNI
database http://adni.loni.ucla.edu. The database is split into 1.5 T and 3.0T
(namely 15 and 30) MRI scanner magnetic field strength datasets. The 15 dataset
contains 64 AD, 110 MCI (Mild Cognitive Impairment) and 90 NC, while the
30 dataset contains 66 AD and 110 NC. After applying DARTEL VBM [2]
preprocessing pipeline on the data with scale of 4 × 4 × 4 mm3 voxel size, there
are in total 20,091 voxels with average values in GM population on template
greater than 0.1 and they are served as input features. We designed experiments
on 1.5T AD/NC, 1.5T MCI/NC and 3.0T AD/NC tasks, namely 15ADNC,
15MCINC and 30ADNC, respectively.

3.1 Prediction Results

To test the efficacy of selected features by FDR-HS and compare it with other
univariate models (as listed in Table 1), we feed them into elastic net classi-
fier, which has been one of the state-of-the-arts in the prediction of neuroimage
data [11]. The hyper-parameters are determined by grid-search. In details, the
threshold hyper-parameter of p-value in T-test and q-value in BHq are optimized
through {0.001, 0.01, 0.02, 0.05, 0.1}; the threshold hyper-parameter for choosing
non-nulls, i.e. γ for FDR-HS (2.3) and the counterpart of LocalFDR [7], are
chosen from {0.1, 0.2, ..., 0.5}. Besides, the regularization parameters λpro, λles

and λpro-les of FDR-HS are ranged in {0.1, 0.2, ..., 2}. For elastic net, the regu-
larization parameter is chosen from {0.1, 0.2, ..., 2, 5, 10}; the mixture parameter
α is from {0, 0.01, ..., 1}. Moreover, we compare our model to GSplit LBI and
elastic net, adopting the same optimized strategy for hyper-parameters in [12]
(the top 300 negative voxels are identified as procedural bias [12]) and those of
elastic net following after the univariate models, as mentioned above.

A 10-fold cross-validation strategy is applied and the classification results for
all tasks are summarized in Table 1. As shown, our method yields better results
than others in all cases, that includes: (1) FDR-HS can select features with more

http://adni.loni.ucla.edu


FDR-HS: An Empirical Bayesian Identification of Heterogenous Features 617

prediction power than other univariate models due to the ability to capture het-
erogenous spatial patterns; (2) FDR-HS can achieve better classification results
than multivariate methods in high dimensional settings, in which the non-nulls
may be represented by other nulls that are highly correlated with them.

Table 1. Comparison between FDR-HS and others on 10-fold classification result

Univariate + ElasticNet Multivariate

T-test BHq [4] LocalFDR [7] FDR-HS GSplit LBI [12] Elastic Net [16]

15ADNC 89.61% 89.61% 87.01% 90.26% 85.06% 87.01%

15MCINC 70.50% 71.00% 73.50% 75.00% 72.50% 72.00%

30ADNC 88.64% 89.77% 89.77% 91.48% 89.77% 88.07%

3.2 Feature Selection Analysis

We used 2-d images of 30ADNC to visualize the features of all methods under
the hyper-parameters that give the best accuracy. As shown in Fig. 3, the lesion
features selected by FDR-HS are located clustered in early damaged regions;
while procedural bias are surrounding around lateral ventricle. Besides, such a
result is given by λles < λpro < λpro-les, which agrees with that the larger value
results in features with lower level of spatial coherence. In contrast, the lesions
selected by T-test and BHq are scattered and redundant; some procedural bias
around lateral ventricle are missed by BHq and LocalFDR. Moreover, GSplit LBI
selected procedural bias on regions with CSF space less enlarged than lateral
ventricle; besides, it ignored lesions located in medial temporal lobe, Thalamus
and Fusiform etc., which are believed to be the early damaged regions [1,8].

Fig. 3. The comparison of FDR-HS between others in terms of feature selection
(30ADNC). Red denotes lesions; blue denotes procedural bias.

Besides, we also evaluated the stability of selected features using multi-set
Dice Coefficient (mDC) measurement defined in [15]. Larger mDC implies more
stable feature selection. As shown in Table 2, our model can obtain more stable
results than GSplit LBI which suffer the “collinearity” problem.
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Table 2. Comparison between FDR-HS and others on stability (measured by mDC)

T-test BHq LocalFDR FDR-HS GSplit LBI

mDC(+) (Lesion features) 0.6705 0.6248 0.6698 0.6842 0.4598

mDC(−) (Procedural Bias) 0.6267 0.5541 0.5127 0.6540 0.3033

4 Conclusions

In this paper, a “two-groups” Empirical-Bayes model is proposed to stably and
efficiently select interpretable heterogenous features in voxel-based neuroimage
analysis. By modeling prior probability voxel-by-voxel and using a heterogenous
regularization, the model can avoid multicollinearity and exploit spatial patterns
of features. With experiments on ADNI database, the features selected by our
models have better interpretability and prediction power than others.
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