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Abstract. The demented brain wiring undergoes several changes with
dementia progression. However, in early dementia stages, particularly
early mild cognitive impairment (eMCI), these remain challenging to
spot. Hence, developing accurate diagnostic techniques for eMCI identifi-
cation is critical for early intervention to prevent the onset of Alzheimer’s
Disease (AD). There is a large body of machine-learning based research
developed for classifying different brain states (e.g., AD vs MCI). These
works can be fundamentally grouped into two categories. The first uses
correlational methods, such as canonical correlation analysis (CCA) and
its variants, with the aim to identify most correlated features for diagno-
sis. The second includes discriminative methods, such as feature selec-
tion methods and linear discriminative analysis (LDA) and its variants to
identify brain features that distinguish between two brain states. How-
ever, existing methods examine these correlational and discriminative
brain data independently, which overlooks the complementary informa-
tion provided by both techniques, which could prove to be useful in the
classification of patients with dementia. On the other hand, how early
dementia affects cortical brain connections in morphology remains largely
unexplored. To address these limitations, we propose a joint correlational
and discriminative ensemble learning framework for eMCI diagnosis that
leverages a novel brain network representation, derived from the cor-
tex. Specifically, we devise ‘the shallow convolutional brain multiplex’
(SCBM), which not only measures the similarity in morphology between
pairs of brain regions, but also encodes the relationship between two
morphological brain networks. Then, we represent each individual brain
using a set of SCBMs, which are used to train joint ensemble CCA-SVM
and LDA-based classifier. Our framework outperformed several state-of-
the-art methods by 3-7% including independent correlational and dis-
criminative methods.
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1 Introduction

Early mild cognitive impairment (eMCI) is an early stage of dementia, that
affects brain function and cognition in subtle ways that remain challenging to
spot when mapping brain connections using Magnetic Resonance Imaging (MRI)
in the disordered brain. Undoubtedly, understanding how early dementia alters
specific brain connections across different patients might help better diagnose
and stratify early stages of brain dementia, treat patients effectively, and even-
tually slow down worsening of symptoms and conversion to Alzheimer’s Disease
(AD). Within this scope, several machine learning approaches leveraged multi-
modal (MRI) data including resting-state functional MRI (rsfMRI) and diffusion
MRI (dMRI) to distinguish between patients with MCI and healthy controls [1].
However, the very early brain states of dementia including eMCI remain least
investigated in dementia literature, compared with AD and MCI states.

Recent machine-learning methods were devised for MCI identification using
connectomic brain data [2,3]. However, existing works mainly used functional
networks (derived from rsfMRI) and structural networks (derived from dMRI).
These exclude the recent landmark works [4–6], which devised morphological
brain networks (MBN) for mapping morphological ‘connections’ in the cor-
tex. Basically, an MBN is generated by measuring the difference in morphology
between two cortical regions based on a specific cortical attribute (e.g., sulcal
depth). More importantly, [4,6] proposed to embed multiple brain networks into
a multiplex network structure composed of intra-layer and inter-layer networks.
Each intra-layer network in the multiplex represents an MBN derived from a spe-
cific cortical attribute, whereas an inter-layer network is a network-to-network
similarity slid between two consecutive intra-layers. The integrated inter-layer
network is able to capture high-order brain alterations at the morphological
level. While [6] used correlational inter-layers in the brain multiplex structure
for late dementia diagnosis, [4] proposed convolutional inter-layers produced by
convolving two consecutive MBNs (intra-layers) in the multiplex for early demen-
tia stratification. Notably, both multiplex architectures outperformed conven-
tional single-layer and multi-layer brain network representations. Furthermore,
while [6] used a machine learning method that identifies discriminative con-
nectional features for dementia classification, [4] proposed a correlation-based
ensemble learning framework, which identifies highly correlated multiplex fea-
tures. Such approaches disentangle correlational from discriminative approaches,
which might limit our understanding of disordered connectional changes in the
diseased brain.

Broadly, existing classification approaches can be categorized into two groups:
(1) methods that aim to identify highly correlated features such as Canonical
Correlation Analysis (CCA) [4,7,8], and (2) methods that seek to identify the
most discriminative features using feature selection methods such as [9] or dis-
criminative analysis [10]. The first group includes all related CCA works and their
variants such as sparse CCA (sCCA) [11] and non-linear kernel CCA (kCCA)
[12]. Typically, CCA maps input features into a shared space where their cor-
relation is maximized, and the mapped features can then be fused. The second
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group comprises discriminative machine learning approaches, such as Linear Dis-
criminant Analysis (LDA), where the input features are projected onto a space
where their disparity and discriminability are maximized [10]. Other methods
integrate a discriminative feature selection method such as mutual information
(MutInf-FS) [9] and Infinite Feature Selection (Inf-FS) [6,13]. However, a fun-
damental limitation of the above methods and works reviewed in [14] consists
in either identifying correlational features or discriminative features for stratify-
ing dementia states. This overlooks the complementary information that can be
integrated from both correlational and discriminative approaches to further the
eMCI/NC classification accuracy.

To fill this gap, we propose a joint correlational and discriminative ensemble
learning framework, which first pairs multi-source brain multiplex data generated
from a set of MBNs. Next, each pair is communicated to two different blocks of
our framework: the first block including a set of discriminative classifiers and the
second block including a set of correlational classifiers. Ultimately, we aggregate
labels predicted by both blocks using majority voting to output the final label for
a target testing subject. In addition to this landmark contribution, we propose
a novel multi-layer brain network architecture, the shallow convolutional brain
multiplex (SCBM), which unlike the deep CBM proposed in [4], is generated
using only two MBNs. This avoids creating redundant features when pairing
multiplexes prior to passing them forward to classifiers.

2 Ensemble LDA and CCA-SVM Paired Classifier
Learning using Shallow Convolutional Brain
Multiplexes

In this section, we introduce the concept of a shallow convolutional brain multi-
plex and present our novel joint correlational and discriminative ensemble learn-
ing framework. Fig. 1 shows the different steps for (A) shallow convolutional
brain multiplex construction from cortical surface, and (B) multi-source SCBM
data pairing for training the correlational block comprising a set of CCA-based
SVM classifiers and the discriminative block including a set of LDA classifiers.
Below we detail the different steps of our eMCI/NC classification framework.

Single-View Morphological Brain Network (MBN) Construction. For
each cortical attribute (e.g., cortical thickness), we construct a single-view net-
work for each subject. Such network comprises a set of nodes (anatomical brain
regions) and a collection of edges interconnecting the nodes (representing the
difference between the two brain regions in morphology). The average value of
a cortical attribute was calculated for each anatomical region of interest (ROI).
For each cortical attribute, the strength of each network edge connecting two
ROIs is then computed as the absolute difference between their average values,
thereby quantifying their dissimilarity (Fig. 1). The same procedure was followed
to obtain the connectivity matrices from different cortical attributes (e.g., sulcal
depth, curvature) [4,6].
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Fig. 1. Pipeline of the proposed joint correlational and discriminative ensemble learn-
ing using shallow convolutional brain multiplexes. (A) shows the construction of a sin-
gle multiplex where the inter-layers are created between two intra-layers (two MBNs
derived from the cortical surface). (B) We first represent each subject using N multi-
plexes, produced using different combinations of morphological brain networks. Next,
for all possible combinations of multiplex pairs, each pair of multiplexes is passed into
the ensemble framework, consisting of a correlational learning block (where they are
mapped by CCA and classified by SVM) and a discriminative block (where they are
mapped and separated into two classes by LDA). The two blocks produce predicted
class labels for the test subjects based on analysis of subsequent pairs of multiplexes.
The final class label is assigned through majority voting on labels assigned by the two
blocks.

Convolutional Brain Multiplex Construction. In a generic way, we define
a brain multiplex M using a set of M intra-layers (or MBNs) {V1, . . . ,VM},
each representing a single view of the brain morphology (i.e., cortical attribute),
where between two consecutive intra-layers Vi and Vj we slide an inter-layer
Ci,j , which is defined by convolving two consecutive intra-layers. Convolution
captures the signal within a subgraph (a small patch in the connectivity matrix)
extracted from a first layer (whole matrix) as an expression of other subgraphs
extracted from a second layer. One can think of the inter-layer network as a
‘blending’ of both intra-layers, expressing the amount of overlap of first intra-
layer as it is shifted over the second intra-layer.

Each element in row a and column b within the convolutional inter-
layer matrix Ci,j between views Vi and Vj is defined as: Ci,j(a, b) =∑

p

∑
q Vi(p, q)Vj(a − p + 1, b − q + 1). The multiplex architecture allows not

only to explore how different brain views get altered by a specific disorder,
but how their relationship might get affected. Since the morphological brain
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connectivity matrices are symmetric (Fig. 1–A), we extract features from each
MBN by directly concatenating the off-diagonal weights of all connectivities in
each upper triangular matrix. For each network of size n×n, we extract a feature
vector of size (n× (n− 1)/2). Previously, in [4], the generalized multiplex archi-
tecture was proposed: M = {V1, C1,2,V2, . . . ,Vj ,Ci,j ,Vj , . . . ,VM}. Next, to
capture the inter-relationship between all possible combinations of intra-layers
in a multiplex, a set of N multiplexes were generated for each subject through
reordering the intra-layer networks, thereby generating an ensemble of brain mul-
tiplexes M = {M1, . . . ,MN}. However, this approach resulted in many highly
correlated features used for the ensemble learning, which may somewhat mis-
lead classifier learning. To minimize the correlation between different multiplexes
when pairing them for ensemble classifier training, we propose a shallow (i.e.,
2-layer) convolutional brain multiplex structure. We define a shallow multiplex
M = {Vi,Ci,j ,Vj} using 2 intra-layers Vi and Vj and an inter-layer Ci,j encod-
ing the relationship between Vi and Vj , slid in between them (Fig. 1–A). We
note that each subject-specific brain multiplex M in M captures unique sim-
ilarities between two different morphological brain network views (e.g., sulcal
depth network and cortical thickness network) that are not present in a different
shallow multiplex.

Proposed Joint Canonical Correlational and Discriminative Mappings
of SCBM Sets. Since each multiplex Mk ∈ M captures a unique and complex
relationship between different brain network views, one needs to examine all
morphological brain multiplexes in the ensemble M. This will provide us with
a more holistic understanding of how explicit morphological brain connections
can be altered by dementia onset as well as how their implicit high-order (a
connection of connections) relationship can be affected. To make use of all the
information available from different multiplexes, in the correlational learning
block of our framework (outlined in green Fig. 1–B), we use CCA [7,8] to map
pairs of multiplex features extracted from different sets into a shared subspace
that depicts highly-correlated relevant features. We then concatenate the CCA-
mapped multiplex features from the first and second sets. This correlational
block allows to minimize the multiplex set-specific noise and reduces multiplex
data dimensionality. Next, we use each CCA-mapped pair of multiplex features
M̃c

k,l to train a linear support vector machine (SVM) classifier (Fig. 1–B). Noting
that for each training subject we have N multiplexes estimated, we perform C2

N

mappings of each SCBM pair in M.
Simultaneously, we train the paralleled discriminative block (outlined in red

Fig. 1–B) aggregating sets of regularized LDA classifiers using the paired SCBM
features from different sets in a supervised manner. Specifically, each LDA clas-
sifier attempts to maximize the difference between multiplex features so that
there are distinct groups based on the given class labels. All training multiplex
features are mapped into a discriminative space guided by the labels, where dis-
criminative paired multiplex features are generated M̃d

k,l. In the testing stage,
we use the learned correlational and discriminative transformations to respec-
tively map each pair of testing multiplex feature vector onto their corresponding
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CCA space where they are communicated to an SVM classifier and LDA space,
respectively. Finally, to identify the label of the testing subject, we use majority
voting by selecting the highly frequent predicted label outputted by classifiers
in both blocks. We note that LDA performs both feature dimensionality reduc-
tion and classification, while CCA only maps the features, thus requires to be
combined with a classifier such as SVM.

3 Results and Discussion

Data. We used leave-one-out cross validation to evaluate the proposed clas-
sification framework on 82 subjects (42 eMCI and 42 NC) from ADNI GO
public dataset1, each with structural T1-w MR image. We used FreeSurfer
[15] to reconstruct both right and left cortical surfaces for each subject from
T1-w MRI. Then we parcellated each cortical hemisphere into 35 cortical regions
using Desikan-Killiany Atlas. For the deep CBM, we defined N = 6 multi-
plexes, each using M = 4 MBNs, anchored at V1. For each cortical attribute
(signal on the cortical surface), we compute the strength of the morphological
network connection linking ith ROI to the jth ROI as the absolute difference
between the averaged attribute values in both ROIs. Multiplex M1 includes
cortical attribute views {V1,V2,V3,V4}, M2 includes {V1,V2,V4,V3},
M3 includes {V1,V3,V4,V2}, M4 includes {V1,V3,V2,V4}, M5 includes
{V1,V4,V2,V3}, and M6 includes {V1,V4,V3,V2}. For each cortical region,
V1 denotes the maximum principal curvature brain view, V2 denotes the mean
cortical thickness brain view, V3 denotes the mean sulcal depth brain view,
and V4 denotes the mean average curvature brain view. As for the proposed
SCBM, we define N = C2

4 = 6 shallow multiplexes by considering all possible
pairings of 2 views out of 4. For our experiments, we created 4 representations
of MBN data: (1) ‘Views’ by concatenating all MBNs, (2) ‘Correlational multi-
plexes’ with inter-layer computed using Pearson correlation, (3) ‘Convolutional
multiplexes’ composed of 4 intra-layers with inter-layers generated using 2D con-
volution, and (4) ‘Shallow convolutional multiplexes’ composed of 2 intra-layers
with inter-layers generated using 2D convolution.

Comparison Methods and Evaluation. To demonstrate the effectiveness of
integrating correlational and discriminative methods into a single framework,
we benchmarked our method against several discriminative methods including:
Eigenvector Centrality (ECFS) [16], Mutual Information (MutInf-FS) [17], and
Infinite Feature Selection (Inf-FS) [13]. We also benchmarked our method against
the CCA-based eMCI/NC classification framework in [4]. We also evaluated
the performance of each of the aforementioned discriminative methods when
combined with CCA using our proposed framework using MBNs derived from
the right hemisphere since significantly greater cortical atrophy is observed in
the right hemisphere of MCI patients compared with the left hemisphere [18].
A leave-one-out (LOO) cross-validation (CV) scheme was used to test all these

1 http://adni.loni.usc.edu.

http://adni.loni.usc.edu
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Table 1. Average eMCI/NC classification accuracy using our method and different
comparison methods.

Method Dataset Accuracy Sensitivity(%) Specificity(%)

Ensemble SVM Paired
Classifiers using CCA[4]

Views 67.86 61.9 73.81

Correlational 58.33 64.29 52.38

Convolutional 71.43 73.81 69.05

Shallow Conv 73.81 76.19 71.43

Ensemble SVM Paired
Classifiers using ECFS[14]

Views 73.81 64.29 83.33

Correlational 73.81 73.81 73.81

Convolutional 76.19 73.81 78.57

Shallow Conv 66.67 66.67 66.67

Ensemble SVM Paired
Classifiers using CCA[6]+
ECFS[14]

Views 69.05 64.29 73.81

Correlational 57.14 61.9 52.38

Convolutional 70.24 73.81 66.67

Shallow Conv 78.57 78.57 78.57

Ensemble SVM Paired
Classifiers using
MutInf-FS[15]

Views 72.62 66.67 78.57

Correlational 63.1 61.9 64.29

Convolutional 64.29 64.29 64.29

Shallow Conv 76.19 78.57 73.81

Ensemble SVM Paired
Classifiers Using CCA[6]+
MutInf-FS[15]

Views 66.67 61.9 71.43

Correlational 54.76 57.14 52.38

Convolutional 71.43 71.43 71.43

Shallow Conv 77.38 78.57 76.19

Ensemble LDA Paired
Classifiers[9]

Views 70.24 61.9 78.57

Correlational 71.43 71.43 71.43

Convolutional 77.38 78.57 76.19

Shallow Conv 73.81 73.81 73.81

Ensemble LDA[9] and
CCA-SVM[6] Paired
Classifiers (Ours)

Views 70.24 69.05 71.43

Correlational 70.24 66.67 73.81

Convolutional 79.76 78.57 80.95

Shallow Conv 80.95 83.33 78.57

methods, with a 5-fold nested CV to optimize the number of selected features
for discriminative methods. Furthermore, each of these methods was evaluated
using the 4 representations of MBN data.

Best performance. Table 1 displays the results for our proposed framework and all
comparison methods. Overall, merging discriminative and correlational methods
in an ensemble learning framework consistently outperformed the base methods
when used independently. Furthermore, our method, combining CCA and LDA,
achieved the best classification accuracy 80.95% using shallow convolutional
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brain multiplexes. Compared with other correlational-discriminative frameworks
(e.g., CCA + ECFS) and the recent work [4], our method increased the classifi-
cation accuracy by ∼3-7%.

Shallow vs. deep convolutional brain multiplexes. The proposed SCBM consis-
tently outperformed concatenated MBN views and correlation brain multiplexes
across all methods –except for independent ECFS. Since different deep multi-
plexes contain overlapping sets of features, resulting in highly-correlated input
data, it might result in a suboptimal ensemble performance. Hence, the new shal-
low multiplex structure solved this problem by reducing the correlation between
individual classifiers in the ensemble and overall produced a better ensemble clas-
sifier performance compared to the ensemble classifier using deep convolutional
multiplex structure [4].

4 Conclusion

Diagnosing early brain symptoms of dementia such as early Mild Cognitive
Impairment (eMCI) is vital to prevent worsening of symptoms. To assist this
diagnosis, we proposed a joint correlational and discriminative ensemble learn-
ing framework using shallow convolution brain multiplexes. Our method attained
a large increase in accuracy when using both the shallow and deep convolutional
data against several benchmark methods including [4], and numerous discrim-
inative methods. A reported increase of over 7% was attained for the shallow
data which supports our theory that utilizing both correlational and discrimina-
tive analysis methods yields an increase in overall performance. Another conclu-
sion drawn from these results is the similar accuracy between the shallow and
deep convolutional data with the shallow having a higher prediction accuracy
frequently. This shows that investigating the similarity between two brain net-
works can be convenient when analyzing the multi-level effects dementia has on
brain connections. Future work may integrate genomic, functional and structural
networks as well as explore a wider variety of discriminative feature selection
methods together with a broad array of correlational methods (such as Sparse
CCA or Kernel CCA) to explore.
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