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Abstract. Due to the popularity of smartphones and wearable devices
nowadays, mobile health (mHealth) technologies are promising to bring
positive and wide impacts on people’s health. State-of-the-art decision-
making methods for mHealth rely on some ideal assumptions. Those
methods either assume that the users are completely homogenous or com-
pletely heterogeneous. However, in reality, a user might be similar with
some, but not all, users. In this paper, we propose a novel group-driven
reinforcement learning method for the mHealth. We aim to understand
how to share information among similar users to better convert the lim-
ited user information into sharper learned RL policies. Specifically, we
employ the K-means clustering method to group users based on their
trajectory information similarity and learn a shared RL policy for each
group. Extensive experiment results have shown that our method can
achieve clear gains over the state-of-the-art RL methods for mHealth.

1 Introduction

In the wake of the vast population of smart devices (smartphones and wearable
devices such as the Fitbit Fuelband and Jawbone etc.) users worldwide, mobile
health (mHealth) technologies become increasingly popular among the scientist
communities. The goal of mHealth is to use smart devices as great platforms
to collect and analyze raw data (weather, location, social activity, stress, etc.).
Based on that, the aim is to provide in-time interventions to device users accord-
ing to their ongoing status and changing needs, helping users to lead healthier
lives, such as reducing the alcohol abuse [4] and the obesity management [11].

Formally, the tailoring of mHealth intervention is modeled as a sequential
decision making (SDM) problem. It aims to learn the optimal decision rule to
decide when, where and how to deliver interventions [7,10,13,17] to best serve
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users. This is a brand-new research topic. Currently, there are two types of
reinforcement learning (RL) methods for mHealth with distinct assumptions:
(a) the off-policy, batch RL [16,17] assumes that all users in the mHealth are
completely homogenous: they share all information and learn an identical RL
for all the users; (b) the on-policy, online RL [7,17] assumes that all users are
completely different: they share no information and run a separate RL for each
user. The above assumptions are good as a start for the mHealth study. However,
when mHealth are applied to more practical situations, they have the following
drawbacks: (a) the off-policy, batch RL method ignore the fact that the behavior
of all users may be too complicated to be modeled with an identical RL, which
leads to potentially large biases in the learned policy; (b) for the on-policy, online
RL method, an individual user’s trajectory data is hardly enough to support a
separate RL learning, which is likely to result in unstable policies that contain
lots of variances [14].

A more realistic assumption lies between the above two extremes: a user
may be similar to some, but not all, users and similar users tend to have similar
behaviors. In this paper, we propose a novel group driven RL for the mHealth. It
is in an actor-critic setting [3]. The core idea is to find the similarity (cohesion)
network for the users. Specifically, we employ the clustering method to mine the
group information. Taking the group information into consideration, we learn K
(i.e., the number of groups) shared RLs for K groups of users respectively; each
RL learning procedure makes use of all the data in that group. Such implemen-
tation balances the conflicting goals of reducing the complexity of data while
enriching the number of samples for each RL learning process.

2 Preliminaries

The Markov Decision Process (MDP) provides a mathematical tool to model the
dynamic system [2,3]. It is defined as a 5-tuple {S,A, P,R, γ}, where S is the
state space and A is the action space. The state transition model P : S×A×S �→
[0, 1] indicates the probability of transiting from one state s to another s′ under a
given action a. R : S ×A �→ R is the corresponding reward, which is assumed to
be bounded over the state and action spaces. γ ∈ [0, 1) is a discount factor that
reduces the influence of future rewards. The stochastic policy π (· | s) determines
how the agent acts with the system by providing each state s with a probability
over all the possible actions. We consider the parameterized stochastic policy,
i.e., πθ (a | s), where θ is the unknown coefficients.

Formally, the quality of a policy πθ is evaluated by a value function
Qπθ (s, a) ∈ R

|S|×|A| [12]. It specifies the total amount of rewards an agent can
achieve when starting from state s, first choosing action a and then following
the policy πθ. It is defined as follows [3]:

Qπθ (s, a) = Eai∼πθ,si∼P

{ ∞∑
t=0

γtR (st, at) | s0 = s, a0 = a

}
. (1)
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The goal of various RL methods is to learn an optimal policy πθ∗ that max-
imizes the Q-value for all the state-action pairs [2]. The objective is πθ∗ =
arg maxθ Ĵ(θ) (such procedure is called the actor updating [3]), where

Ĵ (θ) =
∑
s∈S

dref (s)
∑
a∈A

πθ (a | s) Qπθ (s, a) , (2)

where dref (s) is a reference distribution over states; Qπθ (s, a) is the value for the
parameterized policy πθ. It is obvious that we need the estimation of Qπθ (s, a)
(i.e. the critic updating) to determine the objective function (2).

3 Cohesion Discovery for the RL Learning

Suppose we are given a set of N users; each user is with a trajectory of T
points. Thus in total, we have NT = N × T tuples summarized in D =
{Dn | n = 1, · · · , N} for all the N users, where Dn = {Ui | i = 1, · · · , T} sum-
marizes all the T tuples for the n-th user and Ui = (si, ai,ri, s

′
i) is the i-th tuple

in Dn.

3.1 The Pooled-RL and Separate RL (Separ-RL)

The first RL method (i.e. Pooled-RL) assumes that all the N users are completely
homogenous and following the same MDP; they share all information and learn
an identical RL for all the users [16]. In this setting, the critic updating (with
an aim of seeking for solutions to satisfy the Linear Bellman equation [2,3]) is

w = f (w) = arg min
h

1
|D|

∑
Ui∈D

∥∥x (si, ai)
ᵀ h − [

ri + γy (s′
i; θ)

ᵀ w
]∥∥2

2
+ ζc ‖h‖22 ,

(3)
where w = f (w) is a fixed point problem; |D| represents the number of tuples
in D; xi = x (si, ai)

ᵀ is the value feature at the time point i; yi = y (s′
i; θ) =∑

a∈A x (s′
i, a) πθ (a | s′

i) is the feature at the next time point; ζc is a tuning
parameter. The least-square temporal difference for Q-value (LSTDQ) [5,6] pro-
vides a closed-form solver for (3) as follows

ŵ =

(
ζcI +

1
|D|

∑
Ui∈D

xi (xi − γyi)
ᵀ
)−1 (

1
|D|

∑
Ui∈D

xiri

)
. (4)

As dref (s) is generally unavailable, the T -trial objective for (2) is defined as

θ̂ = arg max
θ

1
|D|

∑
Ui∈D

∑
a∈A

Q (si, a; ŵ) πθ (a|si) − ζa

2
‖θ‖22 , (5)

where Q (si, a; ŵ) = x (si, a)ᵀ ŵ is the newly defined Q-value which is based on
the critic updating result in (4); ζa is the tuning parameter to prevent overfitting.
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In case of large feature spaces, one can iteratively update ŵ via (4) and θ̂ in (5)
to reduce the computational cost.

The Pooled-RL works well when all the N users are very similar. However,
there are great behavior discrepancies among users in the mHealth study because
they have different ages, races, incomes, religions, education levels etc. Such case
makes the current Pooled-RL too simple to simultaneously fit all the N different
users’ behaviors. It easily results in lots of biases in the learned value and policy.

The second RL method (Separ-RL), such as Lei’s online contextual bandit
for mHealth [7,15], assumes that all users are completely heterogeneous. They
share no information and run a separate online RL for each user. The objective
functions are very similar with (3), (4), (5). This method should be great when
the data for each user is very large in size. However, it generally costs a lot of time
and other resources to collect enough data for the Separ-RL learning. Taking the
HeartSteps for example, it takes 42 days to do the trial, which only collects 210
tuples per user. What is worse, there are missing and noises in the data, which
will surely reduce the effective sample size. The problem of small sample size
will easily lead to some unstable policies that contain lots of variances.

3.2 Group driven RL learning (Gr-RL)

We observe that users in mHealth are generally similar with some (but not all)
users in the sense that they may have some similar features, such as age, gender,
race, religion, education level, income and other socioeconomic status [8]. To
this end, we propose a group based RL for mHealth to understand how to share
information across similar users to improve the performance. Specifically, the
users are assumed to be grouped together and likely to share information with
others in the same group. The main idea is to divide the N users into K groups,
and learn a separate RL model for each group. The samples of users in a group
are pooled together, which not only ensures the simplicity of the data for each
RL learning compared with that of the Pooled-RL, but also greatly enriches
the samples for the RL learning compared with that of the Separ-RL, with an
average increase of (N/K − 1) × 100% on sample size (cf. Sect. 3.1).

To cluster the N users, we employ one of the most benchmark clustering
method, i.e., K-means. The behavior information (i.e. states and rewards) in the
trajectory is processed as the feature. Specifically, the T tuples of a user are
stacked together zn = [s1, r1, · · · , sT , rT ]ᵀ. With this new feature, we have the
objective for clustering as J =

∑N
n=1

∑K
k=1 rnk ‖zn − μk‖2, where μk is the k-th

cluster center and rnk ∈ {0, 1} is the binary indicator variable that describes
which of the K clusters the data zn belongs to. After the clustering step, we
have the group information {Gk | k = 1, · · · ,K}, each of which includes a set
of similar users. With the clustering results, we have the new objective for the
critic updating as wk = f (wk) = h∗

k for k = 1, · · · K, where h∗
k is estimated as

min
{hk|k=1,··· ,K}

K∑
k=1

{
1

|Gk|
∑

Ui∈Gk

‖xᵀ
i hk − (ri + γyᵀ

i wk)‖22 + ζc ‖hk‖22
}

, (6)
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which could be solved via the LSTDQ. The objective for the actor updating is

max
{θk|k=1,··· ,K}

K∑
k=1

{
1

|Gk|
∑

Ui∈Gk

∑
a∈A

Q (si, a; ŵk) πθk
(a|si) − ζa

2
‖θk‖22

}
. (7)

The objectives (6) and (7) could be solved independently for each cluster. By
properly setting the value of K, we could balance the conflicting goal of reducing
the discrepancy between connected users while increasing the number of samples
for each RL learning: (a) a small K is suited for the case where T is small and
the users are generally similar; (b) while a large K is adapted to the case where
T is large and users are generally different from others. Besides, we find that the
proposed method is a generalization of the conventional Pooled-RL and Separ-
RL: (a) when K = 1, the proposed method is equivalent to the Pooled-RL; (b)
when K = N , our method is equivalent to the Separ-RL.

4 Experiments

There are three RL methods for comparison: (a) the Pooled-RL that pools the
data across all users and learn an identical policy [16,17] for all the users; (b)
the Separ-RL, which learns a separate RL policy for each user by only using his
or her data [7]; (c) The group driven RL (Gr-RL) is the proposed method.

The HeartSteps dataset is used in the experiment. It is a 42-days trial study
where there are 50 participants. For each participant, 210 decision points are
collected—five decisions per participant per day. At each time point, the set of
intervention actions can be the intervention type, as well as whether or not to
send interventions. The intervention is sent via smartphones, or via wearable
devices like a wristband [1]. In our study, there are two choices for a policy
{0, 1}: a = 1 indicates sending the positive intervention, while a = 0 means no
intervention [16,17]. Specifically, the parameterized stochastic policy is assumed
to be in the form πθ (a | s) = exp[−θᵀφ(s,a)]∑

a′ exp[−θᵀφ(s,a)] , where θ ∈ R
q is the unknown

variance and φ (·, ·) is the feature processing method for the policy, i.e., φ (s, a) =
[asᵀ, a]ᵀ ∈ R

m, which is different from the feature for the value function x (s, a).

4.1 Experiments Settings

For the nth user, a trajectory of T tuples Dn = {(si, ai, ri)}T
i=1 are collected via

the micro-randomized trial [7,10]. The initial state is sampled from the Gaussian
distribution S0 ∼ Np {0, Σ}, where Σ is the p × p covariance matrix with pre-
defined elements. The policy of selecting action at = 1 is drawn from the random
policy with a probability of 0.5 to provide interventions, i.e. μ (1 | st) = 0.5 for
all states st. For t ≥ 1, the state and immediate reward are generated as follows

St,1 = β1St−1,1 + ξt,1,

St,2 = β2St−1,2 + β3At−1 + ξt,2, (8)
St,3 = β4St−1,3 + β5St−1,3At−1 + β6At−1 + ξt,3,

St,j = β7St−1,j + ξt,j , for j = 4, . . . , p
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Fig. 1. Average reward of 3 RL methods: (a) Pooled-RL, (b) Separ-RL, (c) Gr-RLK=3

and Gr-RLK=7. The left sub-figure shows the results when the trajectory is short, i.e.
T = 42; the right one shows the results when T = 100. A larger value is better.

Rt = β14 × [β8 + At × (β9 + β10St,1 + β11St,2) + β12St,1 − β13St,3 + 
t] , (9)

where β = {βi}14i=1 are the main parameters for the MDP; {ξt,i}p
i=1 ∼ N (

0, σ2
s

)
is the noise in the state (9) and 
t ∼ N (

0, σ2
r

)
is the noise in the reward

model (9). To mimic N users that are similar but not identical, we need N
different βs, each of which is similar with a set of others. Formally, there are
two steps to obtain β for the i-th user: (a) select the m-th basic β, i.e. βbasic

m ;
it determines which group the i-th user belongs to; (b) add the noise βi =
βbasic

m + δi, for i ∈ {1, 2, · · · , Nm} to make each user different from others,
where Nm indicates the number of users in the m-th group, δi ∼ N (0, σbI14) is
the noise and I14 ∈ R

14×14 is an identity matrix. The value of σb specifies how
different the users are. Specially in our experiment, we set M = 5 groups (each
group has Nm = 10 people, leading to N = 50 users involved in the experiment).
The basic βs for the M groups are set as follows

βbasic
1 = [0.40, 0.25, 0.35, 0.65, 0.10, 0.50, 0.22, 2.00, 0.15, 0.20, 0.32, 0.10, 0.45, 800]

βbasic
2 = [0.45, 0.35, 0.40, 0.70, 0.15, 0.55, 0.30, 2.20, 0.25, 0.25, 0.40, 0.12, 0.55, 700]

βbasic
3 = [0.35, 0.30, 0.30, 0.60, 0.05, 0.65, 0.28, 2.60, 0.35, 0.45, 0.45, 0.15, 0.50, 650]

βbasic
4 = [0.55, 0.40, 0.25, 0.55, 0.08, 0.70, 0.26, 3.10, 0.25, 0.35, 0.30, 0.17, 0.60, 500]

βbasic
5 = [0.20, 0.50, 0.20, 0.62, 0.06, 0.52, 0.27, 3.00, 0.15, 0.15, 0.50, 0.16, 0.70, 450] ,

Besides, the noises are set σs = σr = 1 and σβ = 0.01. Other variances are p = 3,
q = 4, ζa = ζc = 0.01. The feature processing for the value estimation Qπθ (s, a)
is x (s, a) = [1, sᵀ, a, sᵀa]ᵀ ∈ R

2p+2 for all the compared methods.

4.2 Evaluation Metric and Results

In the experiments, the expectation of long run average reward (ElrAR) E [ηπθ̂ ]
is proposed to evaluate the quality of a learned policy πθ̂ [9,10]. Intuitively in
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Table 1. The average reward of three RL methods when the discount factor γ changes
from 0 to 0.95: (a) Pooled-RL, (b) Separ-RL, (c) Gr-RLK=3 and Gr-RLK=7. A larger
value is better. The bold value is the best and the blue italic value is the 2nd best.

γ Average reward (T = 42)

Pooled-RL Separ-RL Gr-RLK = 3 Gr-RLK = 7

0 1268.6± 68.2 1255.3± 62.3 1279.0± 66.6 1289.5±64.5

0:2 1268.1± 68.3 1287.6± 76.8 1318.3± 62.5 1337.3±56.7

0:4 1267.6± 68.4 1347.0± 54.1 1368.8± 57.6 1389.7±50.7

0:6 1267.3± 68.5 1357.6± 57.9 1441.3± 48.2 1446.3±46.7

0:8 1266.8± 68.7 1369.4± 51.6 1513.9±38.8 1484.0± 44.5

0:95 1266.3± 68.7 1348.9± 53.4 1538.6±34.3 1500.6± 42.8

Avg 1267.4 1327.6 1410.0 1407.9

γ Average reward (T = 100)

0 1284.4± 64.1 1271.1± 70.7 1293.5± 62.1 1294.9±63.7

0:2 1285.8± 63.9 1301.2± 65.6 1329.6± 58.5 1332.9±58.7

0:4 1287.1± 63.8 1370.1± 49.1 1385.5± 52.1 1393.0±49.2

0:6 1288.5± 63.6 1409.3± 42.2 1452.9± 44.3 1459.6±40.9

0:8 1289.9± 63.4 1435.0± 37.6 1519.0±39.5 1518.0± 38.5

0:95 1291.2± 63.2 1441.9± 35.9 1547.2±37.2 1540.6± 38.1

Avg 1287.8 1371.4 1421.3 1423.2

The value of γ specifies different RL methods: (a) γ = 0 means the
contextual bandit [7],(b) 0 < γ < 1 indicates the discounted reward RL.

the HeartSteps application, ElrAR measures the average step a user could take
each day when he or she is provided by the intervention via the learned policy
πθ̂. Specifically, there are two steps to achieve the ElrAR [10]: (a) get the ηπθ̂ for
each user by averaging the rewards over the last 4, 000 elements in the long run
trajectory with a total number of 5, 000 tuples; (b) ElrAR E [ηπθ̂ ] is achieved by
averaging over the ηπθ̂ ’s of all users.

The experiment results are summarized in Table 1 and Fig. 1, where there are
three RL methods: (a) Pooled-RL, (b) Separ-RL, (c) Gr-RLK=3 and Gr-RLK=7.
K = 3, 7 is the number of cluster centers in our algorithm, which is set different
from the true number of groups M = 5. Such setting is to show that Gr-RL does
not require the true value of M . There are two sub-tables in Table 1. The top
sub-table summarizes the experiment results of three RL methods under six γ
settings (i.e. the discount reward) when the trajectory is short, i.e. T = 42. While
the bottom one displays the results when the trajectory is long, i.e. T = 100.
Each row shows the results under one discount factor, γ = 0, · · · , 0.95; the last
row shows the average performance over all the six γ settings.

As we shall see, Gr-RLK=3 and Gr-RLK=7 generally perform similarly and
are always among the best. Such results demonstrate that our method doesn’t
require the true value of groups and is robust to the value of K. In average, the
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proposed method improves the ElrAR by 82.4 and 80.3 steps when T = 42 as well
as 49.8 and 51.7 steps when T = 100, compared with the best result of the state-
of-the-art methods, i.e. Separ-RL. There are two interesting observations: (1)
the improvement of our method decreases as the trajectory length T increases;
(2) when the trajectory is short, i.e. T = 42, it is better to set small Ks, which
emphasizes the enriching of dataset; while the trajectory is long, i.e. T = 100, it
is better to set large Ks to simplify the data for each RL learning.

5 Conclusions and Discussion

In this paper, we propose a novel group driven RL method for the mHealth. Com-
pared with the state-of-the-art RL methods for mHealth, it is based on a more
practical assumption that admits the discrepancies between users and assumes
that a user should be similar with some (but not all) users. The proposed method
is able to balance the conflicting goal of reducing the discrepancy between pooled
users while increasing the number of samples for each RL learning. Extensive
experiment results verify that our method gains obvious advantages over the
state-of-the-art RL methods in the mHealth.

References

1. Dempsey, W., Liao, P., Klasnja, P., Nahum-Shani, I., Murphy, S.A.: Randomised
trials for the fitbit generation. Significance 12(6), 20–23 (2016)

2. Geist, M., Pietquin, O.: Algorithmic survey of parametric value function approxi-
mation. IEEE TNNLS 24(6), 845–867 (2013)

3. Grondman, I., Busoniu, L., Lopes, G.A.D., Babuska, R.: A survey of actor-critic
reinforcement learning: standard and natural policy gradients. IEEE Trans. Syst.
Man Cybern. 42(6), 1291–1307 (2012)

4. Gustafson, D.: A smartphone application to support recovery from alcoholism: a
randomized clinical trial. JAMA Psychiatry 71(5), 566–572 (2014)

5. Kolter, J.Z., Ng, A.Y.: Regularization and feature selection in least-squares tem-
poral difference learning. In: International Conference on Machine Learning,
pp. 521–528 (2009)

6. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. J. Mach. Learn. Res.
4, 1107–1149 (2003)

7. Lei, H., Tewari, A., Murphy, S.: An actor-critic contextual bandit algorithm for
personalized interventions using mobile devices. In: NIPS 2014 Workshop: Person-
alization: Methods and Applications, pp. 1–9 (2014)

8. Li, T., Levina, E., Zhu, J.: Prediction models for network-linked data. CoRR
abs/1602.01192, February 2016

9. Liao, P., Tewari, A., Murphy, S.: Constructing just-in-time adaptive interventions.
Ph.D. Section Proposal, pp. 1–49 (2015)

10. Murphy, S.A., Deng, Y., Laber, E.B., Maei, H.R., Sutton, R.S., Witkiewitz, K.: A
batch, off-policy, actor-critic algorithm for optimizing the average reward. CoRR
abs/1607.05047 (2016)

11. Patrick, K., Raab, F., Adams, M., Dillon, L., Zabinski, M., Rock, C., Griswold,
W., Norman, G.: A text message-based intervention for weight loss: randomized
controlled trial. J. Med. Internet Res. 11(1), e1 (2009)



598 F. Zhu et al.

12. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.
MIT Press, Cambridge (2012)

13. Xu, Z., Li, Y., Axel, L., Huang, J.: Efficient preconditioning in joint total variation
regularized parallel MRI reconstruction. In: Navab, N., Hornegger, J., Wells, W.M.,
Frangi, A.F. (eds.) MICCAI 2015, Part II. LNCS, vol. 9350, pp. 563–570. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24571-3 67

14. Xu, Z., Wang, S., Zhu, F., Huang, J.: Seq2seq fingerprint: An unsupervised deep
molecular embedding for drug discovery. In: ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics (2017)

15. Zhu, F., Guo, J., Li, R., Huang, J.: Robust actor-critic contextual bandit for mobile
health (mhealth) interventions. arXiv preprint arXiv:1802.09714 (2018)

16. Zhu, F., Liao, P.: Effective warm start for the online actor-critic reinforcement
learning based mhealth intervention. In: The Multi-disciplinary Conference on
Reinforcement Learning and Decision Making, pp. 6–10 (2017)

17. Zhu, F., Liao, P., Zhu, X., Yao, Y., Huang, J.: Cohesion-driven online actor-critic
reinforcement learning for mhealth intervention. arXiv:1703.10039 (2017)

https://doi.org/10.1007/978-3-319-24571-3_67
http://arxiv.org/abs/1802.09714
http://arxiv.org/abs/1703.10039

	Group-Driven Reinforcement Learning for Personalized mHealth Intervention
	1 Introduction
	2 Preliminaries
	3 Cohesion Discovery for the RL Learning
	3.1 The Pooled-RL and Separate RL (Separ-RL) 
	3.2 Group driven RL learning (Gr-RL) 

	4 Experiments
	4.1 Experiments Settings
	4.2 Evaluation Metric and Results 

	5 Conclusions and Discussion
	References




