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Abstract. Machine learning methods play increasingly important roles
in pre-procedural planning for complex surgeries and interventions. Very
often, however, researchers find the historical records of emerging surgical
techniques, such as the transcatheter aortic valve replacement (TAVR),
are highly scarce in quantity. In this paper, we address this challenge
by proposing novel generative invertible networks (GIN) to select fea-
tures and generate high-quality virtual patients that may potentially
serve as an additional data source for machine learning. Combining a
convolutional neural network (CNN) and generative adversarial networks
(GAN), GIN discovers the pathophysiologic meaning of the feature space.
Moreover, a test of predicting the surgical outcome directly using the
selected features results in a high accuracy of 81.55%, which suggests
little pathophysiologic information has been lost while conducting the
feature selection. This demonstrates GIN can generate virtual patients
not only visually authentic but also pathophysiologically interpretable.
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1 Introduction

For pre-surgical planning of complex surgeries and interventions, it remains dif-
ficult to build a comprehensive pathophysiology-based model incorporating the
dynamic interactions between the human body and the medical device. Devel-
oping machine learning models from historical surgical data to help predict and
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optimize the surgical outcome has become a promising alternative. In litera-
ture, machine learning methods (e.g., random forests [1], logistic regression [2])
have been used for various prediction purposes based on pre-selected features,
while recently, deep learning methods (e.g., convolutional neural networks [3])
have emerged for feature selection and outcome prediction directly based on the
input images. However, the key challenge to most surgery-related machine learn-
ing problems is that, while existing machine learning methods typically require
large amounts of data, the dataset available consists of data from only a limited
number of patients, which is usually too small for training considering the high
dimensional input data (usually a fusion of medical images and clinical records).
Furthermore, the highly unbalanced prediction input (e.g., age, blood pressure)
and output (e.g., surgical outcome) add another layer of difficulty. In short,
machine learning methods based on existing surgical records have limitations,
and an enhancement of data size is imperative.

One immediate method to enlarge the data size is data augmentation [4],
including image translation, rotation, changing in brightness and tune, etc. Nev-
ertheless, most image augmentation methods used in natural images may impose
alterations with pathophysiologic significance to medical images. For example,
in CT scans, image intensity corresponds to specific substances of human tis-
sue, alterations of which may change the tissue type and lead to a different
surgical outcome. This difference limits the effectiveness of image augmentation
in medical images. Meanwhile, a bypass method that is also widely adopted is
transfer learning technique [5]. Researchers try to adapt the pre-trained model
from natural images and modify a small amount of the model parameters for
medical applications with less training data [3]. Yet a strong assumption of trans-
fer learning is that the image features learnt from natural images would work
similarly in medical images. For the prediction of surgical outcomes, the ratio-
nality of that is not clear, because a surgery involves a complex and dynamic
interaction between the human anatomy and the surgical device, and the visual
cues extracted from the medical images may not be sufficient for such a pre-
diction. In one of our recent work, the predictive performance for transcatheter
aortic valve replacement (TAVR) outcome using transfer learning is inferior to
a CNN learnt from scratch [6]. This urges us to explore other possibilities.

Another way of data size enhancement is to generate virtual patients. Dif-
ferent from some literature, here it refers to the digital models that mimic the
patient organ but are not exactly the same as any real patients [7]. The virtual
patients can be 3D printed for a bench-top surgical simulation to assess surgical
outcomes just like in the real patients as an enhancement to the dataset [8].
While medical image simulation based on a 4D extended cardiac-torso (XCAT)
phantom is widely investigated [9], a complete generative model from scratch is
lacking in medical literature. Some models from the machine learning community
have the potential for virtual patient generation, including restrict Boltzmann
machine (RBM) and variational auto-encoder (VAE) [5]. Yet these methods usu-
ally lead to sever blurriness in generated images. Recently, a deep learning frame-
work, generative adversarial networks (GAN) was proposed to generate high-
quality images, based on the distribution of the training images (see Sect. 2.2),
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which can be authentic enough to fool human eyes [10]. A straightforward idea
is to adapt GAN for virtual patient generation. However, all of the generative
methods above result in generating virtual patients that visually look like real
patients, but with unclear pathophysiologic meanings.

In this work, we proposed a novel, deep learning framework - generative
invertible networks (GIN) to extract the features from the real patients and gen-
erate virtual patients, which were both visually and pathophysiologically plau-
sible, using the features (see Sect. 2). Specifically, GIN tries to find the feature
mapping from the high-dimensional human issue/organ space (represented by
CT images) to a low-dimensional feature space and, more importantly, its reverse
(see Fig. 1). In contrast, GAN only finds the one-direction mapping from the fea-
ture space to the image space (i.e. generating), which makes it difficult to build
the connection between the input images and the physical meaning of the feature
space. In Sect. 3, we performed a case study using GIN to find the bidirectional
feature mapping for the patients who underwent TAVR with the pre-surgical CT
images as the input. Using the reverse mapping CNN, important clinical mark-
ers for the prediction of TAVR outcomes, such as the annular calcification, have
been captured by the low-dimensional feature space (see Fig. 2). Moreover, a test
of predicting the surgical outcome directly using the selected features results in
a high accuracy (see Fig. 4). This shows GIN preserves the pathophysiologically
meaningful features while conducting the dimension reduction and can generate
virtual patients with different possible surgical outcomes.

Fig. 1. The overall architecture of GIN. It contains a GAN and a CNN.

2 Methodology

2.1 Preparing TAVR Dataset with Augmentation

Aortic stenosis (AS) is one of the most common yet severe valvular heart dis-
eases. Transcatheter aortic valve replacement (TAVR) is a less-invasive treat-
ment option for AS patients who have a high risk of open-heart surgery [11].
The deployment of the TAVR prosthesis involves a complex interaction between
the prosthesis, the native aortic root, and the blood flow, which are not fully
understood and may affect the procedural outcome, such as the degree of par-
avalvular leakage (PVL) and the risk of thrombosis/stroke [11]. We studied the
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pre-procedural CT images of 168 AS patient (with an average age of 78) who
received TAVR using a self-expandable prosthetic valve (CoreValve, Medtronic)
from 2013 to 2016. All of the patients had pre-TAVR contrast-enhanced CT
scans, which were performed on a 320-detector row CT scanner (Aquilion ONE,
Toshiba). CT images were reconstructed with 10% increments throughout the
cardiac cycle, and the cardiac phase of the peak aortic valve opening was used.
Each CT dataset contained a 3D volume of the cardiothoracic region. For com-
putational purpose, we chose only one slide at the aortic annulus (selected by
a clinician) for this study. The method itself can be easily generalized to the
3D image volume. Post-TAVR PVL was set to be the major endpoint and was
dichotomized to two groups: group 1 included none or low (trace to mild) PVL,
while group 2 included high (moderate to severe) PVL.

We preformed routine data augmentation by slightly rotating the annular
plane to add more samples. The regions of interest were rotated in 3D by four
rotation angles in the annulus plane and one rotation angle in the longitudinal
X-Z plane, from the original orientation. This led to an augmentation of 10 times
the training set size. The augmented dataset was used to train the GIN.

2.2 Starting from GAN

The architecture of the GAN is shown in the blue dash box of Fig. 1 [5]. The
key idea of the image generation by GAN is regarding the training set images as
realizations of a distribution F , which has extremely high-dimensional support
(i.e. number of pixels of images). The distribution F can be physically inter-
preted as the group of images we are interested in (e.g., the aortic annulus).
GAN can actually find a transformation from an easy-to-generate distribution
U (usually, multi-uniform) to a distribution G, which eventually is close enough
to the target F . In particular, GAN contains 2 neural networks (NN, see blue
dash box of Fig. 1). In each training step of stochastic gradient descent (SGD),
the realizations ui of U is fed into the generator to generate gi following G(i).
Generated image gi is fed into the discriminator to be compared with the train-
ing set data fi and find the discrepancy di, which is served as the loss function
for the generator. The two NN’s are trained by alternative optimization, until
we think the generated distribution G is close enough to the true distribution F .

GIN contains a GAN part for generation (blue dash box of Fig. 1). Moreover,
in our framework, the support of distribution U is regarded as the feature space
(it does not yet have any physical meaning) and realizations of the distribution U
are the hidden features of the corresponding valves. This means given a feature
vector (a realization of distribution U), the GAN part in GIN can generate a
virtual valve based on that feature vector.

2.3 Adding a CNN for Reverse Mapping

As mentioned, the generation using only GAN lacks pathophysiologic interpre-
tation. The reason is that it only gives one-direction mapping from the feature
space U to the real valve distribution F (assuming the final G is close enough to
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the true distribution F , see Sect. 2.2). Thus, the feature space itself is difficult to
interpret, and we are generating virtual patients without meaningful guidance.
One way to introduce the pathophysiologic meaning to the feature space is to
find corresponding locations of the real patients in that space, since the real
patients have surgical records, such as the post-TAVR PVL level, which can be
used to label the space and conduct classification. In other words, we need to
find the backward mapping from the real valve distribution F to the feature
space U . Therefore, besides GAN, we add a CNN to the framework regarding
the generated images gi from G as input and the feature ui ∼ U as the output
(see red box of Fig. 1). After the CNN is trained, we may feed the model with
real patients data fi ∼ F and find its corresponding feature in the feature space.

In most literature, CNN is used for classification [3], which means the super-
vised value for each data set is discrete. Here, we use the CNN for regression,
which means the label ui ∼ U (features) is a continuous vector with a non-zero
measure. This is much more difficult for training when the dimension of U is
high. But the advantage is that we are using the realization of distribution G
(instead of F) as the training set, in which, theoretically speaking, the available
data size is infinitely large. In reality, we restrict the dimension of U to be less
than 20 (10 in the case study) to gain a stable training result from CNN.

2.4 GIN Framework

Putting everything together, GIN contains three NN’s, two of them first form
a GAN (one generator and one discriminator) to find the transformation from
the feature space to the CT images space, then the other NN finds the reverse
mapping from the CT images space to the feature space (see Fig. 1). Finally, we
have the bidirectional mapping between features and CT images. Furthermore,
the feature space selected by GIN captures the pathophysiologic information
hidden in CT images, which can be used to predict surgical complications (PVL).
This allows us to conduct arithmetic operations in the feature space and make
sure any generated virtual patients have physical and pathophysiologic meanings
(e.g., we can generate a virtual patient knowing it may lead to high PVL or not).

It is important to note that our method is essentially different from adversari-
ally learned inference (ALI) or bidirectional GAN (BiGAN) [12] in the literature.
In order to invest the feature space with pathophysiologic meanings, we need a
hard inverse, i.e. CNN=Generator−1 for every input sample. Thus, GIN has a
sequential order of GAN and CNN to make sure the sample-to-sample inverse
is explicitly trained and thus has better expressibility (see reconstruction test
in Sect. 3.1). In contrast, BiGAN or ALI uses one discriminator to supervise
both generator and encoder, the generator and encoder would be inverse to each
other, as claimed, yet only in distribution level, which is not rigorous enough for
medical image applications. Moreover, it uses coupling training of 3 NNs. This
complicated architecture requires more fine tuning and therefore less suitable for
our sparse dataset (see Sect. 2.1).
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Fig. 2. The training results of GIN. (a) the characteristic valve CT images in the
feature space, (b) The real patients valve CT image, (c) reconstruction test of the real
valves in (b).

3 Results

In this test, the dimension of the feature space U is chosen to be 10, the results
can be sharper if the feature dimension is increased to 20. But the training
cost will also increase dramatically. The two NN’s of the GAN part adapt 2-
layer vanilla neural networks with 512 hidden nodes in each hidden layer and
ReLu activations. CNN has approximately the same complexity with leaky ReLu
activation and batch normalization in each layer (see [10] for more details).

3.1 Pathophysiology-Interpretable Feature Mapping

After training the GIN, a 2D cross-section in the feature space of the valves are
shown in Fig. 2(a). The small figures at different locations mean the correspond-
ing characteristic valve CT images in the specific locations of the feature space.
We may find some physical meaning for the two features. In every column, from
top to bottom, the valve rotates clockwise and the shape of the valve wall is
gradually changed. In every row, from left to right, the amount of calcification
(which is the brightest region in the CT images) decreases. According to clinical
observations, high amounts of annular calcification could be an important risk
factor of post-TAVR PVL. Thus, we may speculate that the left region in the
feature space, which has visually more calcium, may be associated with higher
rates of surgical complications.

Since the bidirectional mapping between the feature space and the valve space
(see Sect. 2.4) is found by GIN, We may conduct the following reconstruction
test to visualize the information loss by the framework. The features of the real
patients’ CT images were first extracted by the CNN part, and then the extracted
features were used to generate virtual CT images by the GAN part. Ideally, if
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there is no information loss in both feature extraction (CNN) and generation
(GAN), the reconstructed images should be identical to the real ones. The test
results of some representative real CT images (Fig. 2(b)) are shown in Fig. 2(c).
In the test, the reconstructed images look similar to their real counterparts,
especially the overall shape and orientation of the valve. Meanwhile, some of the
important details like calcification are also captured. This shows that the GIN
captures pathophysiologically meaningful features. Yet some of the details are
missing and also the reconstructed images are not as sharp as the real ones. This
may be because the training set data is too small even with the augmentation
to generate high fidelity images and the feature space is set to be too low to
capture higher order features. Comparing our reconstruction test and the ones
in the BiGAN paper [12], we would conclude that GIN is better in extracting
the features and finding a sample-to-sample hard inverse.

3.2 Post-TAVR PVL Prediction

Fig. 3. The feature mapping of
the real patients in the feature
space with different PVL levels.

In order to assess the pathophysiologic mean-
ing of the feature space, we look for the rela-
tionship between the selected features and
PVL. The first 2 Isomap [13] features are
shown in Fig. 3, where the red squares rep-
resent the patients with high PVL and the
blue crosses represent the patients with low
PVL. The two groups of different PVL lev-
els follow different, visually distinguishable dis-
tribution, even projecting to a 2D feature
plane.

Fig. 4. The accuracy measure-
ments (upper) and ROC curves
(bottom) of the random forest
model in predicting PVL.

A more rigorous approach is to quantify the
pathophysiologic significance by predicting the
post-TAVR PVL level using the features selected.
A simple random forest classifier (total 500 deci-
sion trees) was used to classify the two groups,
namely high PVL and low PVL. A 4-fold cross
validation (75% of data as a training set and
25% as a validation set) was adopted to check
the prediction performance as shown in Fig. 4.
The average of the test accuracy, sensitivity,
and specificity were 81.55%, 70.76%, and 82.42%
respectively. The receiver-operating characteris-
tic (ROC) curves are shown in Fig. 4 of each val-
idation and the AUC values are 0.77, 0.84, 0.82,
and 0.88 respectively. All of these turned out
to be statistically significant (p < 0.001). This
promising result shows that the features selected
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by GIN is pathophysiologically interpretable and the information related to PVL
outcomes in CT image is well-preserved.

3.3 CT Image Generation

Fig. 5. Virtual patient
generation with possibly
different PVL levels.

More importantly, the pathophysiologically inter-
pretable features captured by GIN can be used for
virtual patient generation. Recall that the GAN can
only generate the virtual patients that look like real
patients. However, GIN can generate virtual patients
with specific pathophysiologic appearances. The ran-
dom forests classifier (see Sect. 3.2) actually segments the feature space to two
parts according to its predicted PVL level. Thus, we may generate a virtual
patient with a high probability of resulting in a high PVL by selecting a feature
vector in the high PVL part of the space. As shown in Fig. 5(a), the generated
CT image visually contains a large calcified nodule, which may lead to a high
level post-TAVR PVL. We can also generate a virtual patient that is most likely
with a low or none PVL as shown in Fig. 5(b). Also, we may generate a vir-
tual patient with the features near the decision boundary as shown in Fig. 5(c).
Despite the high prediction accuracy shown in Fig. 4, the sensitivity is relatively
low. Thus, we may generate more virtual patients with a high PVL (Fig. 5(a)) to
reduce the imbalance outcome of the dataset. Also, generating virtual patients
with the features near decision boundary (Fig. 5(c)) can be extremely helpful to
improve the prediction ability of the future predictive model. The generated vir-
tual patients can then be 3D printed and go through virtual surgeries to obtain
the PVL label in vitro (see [7] for more experimental details) as future work.

4 Conclusion

We proposed a new generative framework - GIN - to generate visually authentic
virtual patients by finding the bidirectional feature mapping between the fea-
tures and the real CT images (see Fig. 2). Moreover, a test of predicting the
surgical outcome directly using the selected features resulted in a high accuracy,
which suggests that features contain pathophysiologic meaning (see Fig. 4). This
means GIN can generate virtual patients with different surgical outcomes for
later 3D printing and in-vitro experiments (see Fig. 5). These virtual patients
can be crucial in enhancing the model prediction power as an additional data
source and more importantly, understanding the nature of the disease and per-
forming optimal pre-surgical planning. In general, applying GIN to generate
physically interpretable virtual samples has great potential for image related
machine learning methods with limited and unbalanced datasets.
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