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Abstract. Standard quantification of Positron Emission Tomography
(PET) data requires a long acquisition time to enable pharmacokinetic
(PK) model fitting, however blood flow information from Arterial Spin
Labelling (ASL) Magnetic Resonance Imaging (MRI) can be combined
with simultaneous dynamic PET data to reduce the acquisition time.
Due the difficulty of fitting a PK model to noisy PET data with limited
time points, such ‘fixed-R1’ techniques are constrained to a 30 min min-
imum acquisition, which is intolerable for many patients. In this work
we apply a deep convolutional neural network (CNN) approach to com-
bine the PET and MRI data. This permits shorter acquisition times as
it avoids the noise sensitive voxelwise PK modelling and facilitates the
full modelling of the relationship between blood flow and the dynamic
PET data. This method is compared to three fixed-R1 PK methods, and
the clinically used standardised uptake value ratio (SUVR), using 60 min
dynamic PET PK modelling as the gold standard. Testing on 11 subjects
participating in a study of pre-clinical Alzheimer’s Disease showed that,
for 30 min acquisitions, all methods which combine the PET and MRI
data have comparable performance, however at shorter acquisition times
the CNN approach has a significantly lower mean square error (MSE)
compared to fixed-R1 PK modelling (p = 0.001). For both acquisition
windows, SUVR had a significantly higher MSE than the CNN method
(p ≤ 0.003). This demonstrates that combining simultaneous PET and
MRI data using a CNN can result in robust PET quantification within
a scan time which is tolerable to patients with dementia.

1 Introduction

For the accurate quantification of tracer target density (BPND), such as amyloid-
β burden in Alzheimer’s disease, phamacokinetic (PK) modelling of dynamic
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Positron Emission Tomography (PET) data requires the acquisition to cover
the delivery, binding and washout of the injected radiotracer. This may take
60 min or more which is not clinically feasible, due to patient discomfort, scan-
ner availability, and increased motion. A framework which reduces the PET
acquisition time by incorporating simultaneously acquired arterial spin labelled
(ASL) MRI data into the PK model has been proposed [1]. This involves three
steps; conversion of ASL cerebral blood flow (CBF) maps into the relative PET
tracer delivery parameter (R1), extrapolation of the PET input function (CR)
to account for the missing time-points, and PK model fitting to the measured
PET data using fixed R1 and extrapolated CR. We refer to this as the ‘fixed R1

method’. Unlike the clinically used standardised uptake value ratio (SUVR), this
method can account for changes in blood flow, which can confound estimates of
target density in longitudinal studies [2]. However, due the difficulty of fitting
a PK model to noisy PET data with limited time points, this technique is con-
strained to a 30 min minimum acquisition time, which may still be intolerable
for some patients.

The ‘fixed-R1’ approach estimates R1 from ASL-CBF independently from
dynamic PET fitting for target density (BPND) and washout rate (k2). This
implementation cannot explicitly model the known influence of CBF on washout,
due to high uncertainty in washout estimation, and the complex relationship
which is dependent on the local tissue tracer kinetics [3]. Furthermore, the
extrapolation of the input function, CR, uses scaled population data under the
assumption that tracer washout in this region is equal to the average population
value. This assumption is violated in the case of disease or blood flow changes.

In this work we propose a deep learning (DL) framework to achieve PET
quantification for a short acquisition time in a single step. We avoid the noise
sensitive voxelwise PK curve fitting step, through the use of deep convolutional
neural networks which enforce spatial regularisation across the receptive field.
Our approach negates the need for explicit modelling between CBF, tracer deliv-
ery and tracer washout, as these relationships are learnt from the data and mod-
elled in conjunction with the dynamic PET data. This approach also avoids CR

extrapolation, overcoming the limitation of a population tracer washout rate.
To our knowledge, this is the first time in which DL has been applied to

PET PK modelling. This is due to the availability of robust models to describe
standard data and the lack of one-to-one mapping between model parameters
and dynamic PET data. However, the standard models are not sufficient to
describe PET data with missing time-points. Furthermore, the incorporation
of ASL-CBF constrains the parameter estimation. DL was chosen for its abil-
ity to model the underlying relationship between ASL-CBF and the delivery,
binding and washout of the PET tracer without explicit feature extraction. By
exploiting all of the PET and MRI information, and avoiding voxelwise fitting,
this framework provides more robust estimates of target density with a shorter
acquisition.



50 C. J. Scott et al.

2 Methods

2.1 Deep Learning Framework for BPND Estimation

The framework performs regression of PET target density (BPND) from PET
and MRI data directly. The network was implemented in NiftyNet [4] using
the ‘highresnet’ convolutional neural network with 20 convolutional layers [5],
which uses a stack of residual dilated convolutions with increasingly large dilation
factors. For training we used adaptive moment estimation (Adam) with an initial
learning rate of 10−3, and a root mean square error loss function. The networks
were initialised randomly and trained for a maximum of 50,000 iterations. The
training patch size was 56× 56× 56 voxels and a smoothed brain mask was used
for adaptive sampling. Random rotation and scaling transformations of ±10%
were used for training data augmentation. All inputs were 3D image volumes:
the ASL-CBF maps, the structural T1 weighted MRI, and the dynamic PET
data, which were entered as one frame per channel, see Fig. 1.

2.2 Gold Standard PK Modelling

The linearised simplified reference tissue model (SRTM) is used for gold standard
PET quantification (1). Basis functions for CR(t)⊗e−θt are pre-calculated over a
physiologically plausible range of θ [6], where CR(t) is the tracer concentration in
the reference region. CR(t) is used as an input function since the reference region,
cerebellar grey matter, is considered to be devoid of the imaging target. CT (t)
is the measured tracer concentration in the target tissue. The model parameters
are: R1 (the delivery rate constant in the target tissue relative to reference
tissue), k2 (the transfer rate constant from target tissue to blood), and the
parameter of interest BPND (the binding potential which is related to target
density and consequently amyloid-β burden). The parameters are estimated via
curve fitting to CR(t) and CT (t) acquired over t = 0:60 min.

CT (t) = R1CR(t) + φCR(t) ⊗ e−θt

where φ = k2 − R1k2/(1 + BPND), θ = k2/(1 + BPND)
(1)

2.3 Acquisition Window Definition

For gold standard PK modelling the scan starts at tracer injection, ts = 0, with
a duration of td = 60 min. However, for the short acquisition methods ts > 0,
and td is chosen to fit clinical requirements. We optimise the timing window,
t = ts:ts + td, for each method at different td’s. This was performed over t =
30:60 min, as this period is recommended for routine clinical scans using this
tracer.
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2.4 Comparison Methods for Short Acquisition PET Quantification

We compare the proposed technique to four short PET acquisition methods:
three fixed-R1 methods, and the clinical standard, SUVR.

Fixed R1 Methods. Two methods are used to derive R1 from ASL-CBF: the
linear regression (LR) method [1], and the image fusion (IF) method [7]. Both
methods require a database of subjects with 60 min of PET data and ASL.

Fig. 1. Overview of methods tested. Blue
boxes indicate input subject data and green
boxes population data.

The LR method performs lin-
ear regression between R1 and
ASL-CBF on the database and
the relationship is applied to an
unseen ASL-CBF map. For IF, the
local similarity between the unseen
ASL-CBF map and those in the
database is used to weight the
propagation of R1 database values
into the subject’s space. An addi-
tional method using the gold stan-
dard R1 (true R1) is also included
to demonstrate the upper limit of
this approach, where R1 is esti-
mated perfectly from the ASL data.

For all three methods the esti-
mation of BPND was carried out as
previously described [1,7]. Briefly,
the reference region, CR is extrap-
olated to t = 0, at tracer injection,
by scaling the mean population CR

to the measured data using a linear least squares fit, then the derived R1 value
and the extrapolated CR are used in (1) to estimate k2 and BPND from the
measured PET data.

Standardised Uptake Value Ratio (SUVR). SUVR is calculated by divid-
ing the image (CT ) by the mean value in the reference region (CR) to yield
relative tracer uptake, which can not take blood flow into account. For compari-
son with BPND, one is subtracted, as BPND ≈ CT

CR
−1. SUVR is calculated over

different timing windows by first summing the relevant reconstructed frames.

2.5 Data Acquisition and Pre-processing

Database Construction. For each subject the T1 and ASL-CBF MR images
were affinely registered into PET space. The subjects were randomly split
between training (38, ∼70%), validation (6, ∼10%) and testing (11, ∼20%). The
input data used and an overview of each methodology is summarised in Fig. 1,
where the dynamic PET data include the frames acquired over t = ts:ts + td.
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PET Data. 60 min of PET data were acquired following intravenous injection
of an amyloid-β targeting radiotracer, [18F]florbetapir. Dynamic PET data were
binned into 15s×4, 30s×8, 60s×9, 180s×2, 300s×8 time frames, such that all
frames for t ≥ 20 min were 5 min long. The data were reconstructed into 2×2×2
mm voxels, accounting for dead-time, attenuation (using synthetic CT), scatter,
randoms and normalisation [8].

Fig. 2. MSE averaged across subjects for different timing windows and methods

ASL Data. Pseudo-continuous ASL data were acquired at t = 55:60 min, using
a 3D GRASE readout at 3.75×3.75×4 mm and reconstructed to 1.88×1.88×4
mm voxels. 10 control-label pairs were acquired with a pulse duration and post
labelling delay of 1800 ms. Proton density, S0, was estimated by fitting saturation
recovery images, at three recovery times (1, 2, 4s), for [T1, S0]. Cerebral blood
flow (CBF) maps were then estimated from the ASL and saturation recovery
images [9]. The parameter values were 0.9 ml/g for the plasma/tissue partition
coefficient, 1650 ms for blood T1, and 0.85 for labelling efficiency.

3 Experiments and Results

Data. Imaging data were collected from 55 cognitively normal subjects partic-
ipating in Insight 46, a neuroimaging sub-study of the MRC National Survey
of Health and Development [10], who underwent simultaneous PET and multi-
modal MRI on a Siemens Biograph mMR 3T PET/MRI scanner. 11 subjects
were used for testing, with the remaining subjects used in the database for train-
ing and validation.

Validation. The proposed deep learning (DL) method was compared to three
fixed-R1 methods (LR, IF and true R1), and SUVR. BPND estimation accuracy
was assessed using the mean square error: MSE = 1/v

∑
v(Iest

v − IGS
v )2, where

I is intensity, v is the number of voxels, GS is the gold standard and est is the
estimate. Statistical tests were performed using the Wilcoxon signed rank test.

3.1 Method Comparison over Different Timing Windows

Figure 2 shows the average MSE across subjects for different data acquisition
windows for each method. Here, SUVR shows minimal influence from acquisition
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timing and length due to the simplicity of the technique. However, since it is not
able to account for tracer delivery or washout it has a consistently high MSE.
For the three methods which perform kinetic modelling with a fixed R1 there is
a strong time dependence, with the error increasing greatly as the scan time is
reduced. Consequently they outperform SUVR for 30 min acquisitions, but for
scans of less than 20 min, where the number of datapoints is ≤ 4, they produce a
higher error. This is due to the difficulty in fitting the PK model to a few noisy
datapoints, and the increased uncertainty in the extrapolation of CR.

Fig. 3. Subject MSE for (a) 30 and (b) 15 min scans, summarised in (c). The voxel-wise
error for all subjects for a 15 min scan is shown in (d).

The deep learning based method (DL) shows a consistently low MSE across
timing windows compared to the other techniques. This is because voxel based
PK modelling, and CR extrapolation, which are acquisition length dependent, are
avoided. Furthermore, blood flow information is leveraged to inform both tracer
delivery and washout, reducing the acquisition time required relative to the fixed-
R1 PK modelling techniques. For DL there is no clear trend to the acquisition
window dependence which makes it more flexible for clinical implementation.

3.2 Optimised Timing Window Method Comparison

Based on the mean MSE, shown in Fig. 2, the best timing window for each
method was selected for a 30 min (6 frames) and 15 min (3 frames) scan, repre-
senting a long clinical scan and a tolerable scan duration respectively, see Fig. 3c.
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30 min Optimised Acquisition. Figure 3(a) shows the MSE across subjects
for the 30 min acquisition window. As expected the fixed-R1 methods have a
lower MSE than SUVR due to the more accurate modelling of tracer delivery
and washout. For this acquisition length the benefit of using the deep learning
approach is limited compared to the fixed R1 methods, and the difference in
MSE did not reach statistical significance. However, DL has a significantly lower
MSE compared to SUVR (p = 0.003). Figure 4(a) shows an example subject,
which highlights the good performance of the IF, true R1 and DL methods,
while SUVR shows a large over estimation. The LR method shows corruption
due to artefacts in the ASL-CBF map which propagate directly into the BPND

estimation.

15 min Optimised Acquisition. When the scan time is reduced to 15 min the
MSE in the fixed-R1 methods increases, even when using the true R1 parameter.
By contrast, the DL and SUVR methods maintain their performance levels. Now
DL has a significantly lower MSE than both the fixed-R1 methods (p ≤ 0.001)
and SUVR (p = 0.001). The DL method also has a lower bias than all other
methods, see Fig. 3(d), but this does not reach statistical significance.

Figure 4(b) shows the estimated BPND images using a 15 min acquisition for
the different methods for an example subject. Here, the noise in the fixed-R1

methods is a result of the limited timepoints for the fit. SUVR gives a plausible
estimate of BPND, however the image demonstrates a general overestimation of
the target density compared to the true image. By contrast, the DL technique
yields a low noise image due to the spatial regularisation inherent in the tech-
nique, with high accuracy as the model is able to combine the dynamic PET data
with the blood flow information from the ASL to accurately estimate BPND.

Fig. 4. Example subject BPND maps optimised for (a) 30 and (b) 15 min acquisition,
where the true BPND is calculated over 60 min for both.

4 Discussion and Conclusion

In this paper we present a deep learning approach to PET target density esti-
mation, by combining dynamic PET data with MRI blood flow and structural
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images to significantly reduce the acquisition time to just 15 min, compared to
the gold standard 60 min. This is applied to amyloid PET data which is used in
the diagnosis and monitoring of Alzheimer’s disease, as the symptoms of the dis-
ease necessitate short scans. This method was compared to the clinical standard,
SUVR, as well as previously proposed techniques which fix the tracer delivery
parameter R1 using MRI blood flow data in the PET PK modelling to reduce the
acquisition time. This demonstrated that, for a 30 min acquisition, the proposed
technique performed comparably to the previously proposed fixed-R1 techniques,
and significantly better than SUVR (p = 0.003). When the acquisition window
was reduced to 15 min, the fixed-R1 methods had insufficient data to fit the PK
model. However, the deep learning method maintained its low MSE, which was
significantly lower than the clinically used SUVR (p = 0.001).

This initial work proves the benefit of using deep learning to perform PET
quantification where limited PET data means that the standard model fails. In
the future we intend to build on this approach by explicitly encoding the PET
frame timing information into the model. This would not only give the model
more information, but also the potential to cope with discontinuous scans.
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