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Abstract. Convolutional neural networks (CNNs) have shown promis-
ing results on several segmentation tasks in magnetic resonance (MR)
images. However, the accuracy of CNNs may degrade severely when
segmenting images acquired with different scanners and/or protocols as
compared to the training data, thus limiting their practical utility. We
address this shortcoming in a lifelong multi-domain learning setting by
treating images acquired with different scanners or protocols as samples
from different, but related domains. Our solution is a single CNN with
shared convolutional filters and domain-specific batch normalization lay-
ers, which can be tuned to new domains with only a few (=4) labelled
images. Importantly, this is achieved while retaining performance on the
older domains whose training data may no longer be available. We evalu-
ate the method for brain structure segmentation in MR images. Results
demonstrate that the proposed method largely closes the gap to the
benchmark, which is training a dedicated CNN for each scanner.

1 Introduction

Segmentation of brain MR images is a critical step in many diagnostic and
surgical applications. Accordingly, several approaches have been proposed for
tackling this problem such as atlas-based segmentation [1], methods based on
machine learning techniques such as CNNs [2], among many others as detailed
in this recent survey [3]. One of the important challenges in many MRI analysis
tasks, including segmentation, is robustness to differences in statistical charac-
teristics of image intensities. These differences might arise due to using different
scanners in which factors like drift in scanner SNR over time [4], gradient non-
linearities [5] and others play an important role. Intensity variations may even
arise when scanning protocol parameters (flip angle, echo or repetition time, etc.)
are slightly changed on the same scanner. Figure 1(a, b) shows 2D slices from
two T1-weighted MRI datasets from different scanners, along with their intensity
histograms which show the aforementioned variations. Segmentation algorithms
are often very sensitive to such changes. Furthermore, images acquired with
different MR modalities, such as T1 and T2-weighted images, may have consid-
erable high-level similarities in image content (see Fig. 1). While analyzing these
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Fig. 1. Image slices (top) and corresponding histograms (bottom) of normalized T1w
(a,b) and T2w (c,d) MRIs from different scanners. Despite high-level information sim-
ilarity, there exists considerable intensity and contrast differences, which segmentation
algorithms are often sensitive to.

images, humans can leverage such commonalities easily and it would be highly
desirable if learning-based algorithms could mimic this trait.

In the parlance of transfer machine learning, images acquired from differ-
ent scanners, protocols or similar MR modalities may be viewed as data points
sampled from different domains, with the degree of domain shift potentially indi-
cated by the differences in their intensity statistics. This perspective motivates
us to employ ideas from the literature of domain adaptation [6], multi-domain
learning [7] and lifelong learning [8] to the problem of brain segmentation across
scanners,/protocols. Domain adaptation/transfer learning refers to a situation
where a learner trained on a source domain is able to perform well on a tar-
get domain, of which only a few labelled examples are available. However, in
this case, the performance on the source domain may not be necessarily main-
tained after adaptation. Multi-domain learning aims to train a learner that can
simultaneously perform well on multiple domains. Finally, in lifelong learning, a
multi-domain learner is able to incorporate new domains with only few labelled
examples, while preserving performance on previous domains.

Variants of image intensity standardization [9,10] and atlas intensity renor-
malization [11] have been proposed as pre-processing steps to insure conventional
segmentation methods from inter-scanner differences. Among learning methods
based on hand-crafted features, transfer learning approaches have been employed
for multi-site segmentation [12] and classification [13]. While adaptive support
vector machines used by [12] may be adapted for new scanners in a lifelong
learning sense, they are likely to be limited by the quality of the hand-crafted
features. Using CNNs, [14] propose to deal with inter-protocol differences by
learning domain invariant representations. This approach may be limited to
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work with the least common denominator between the domains, while, as shown
in [15], providing a few separate parameters for each domain allows for learn-
ing of domain specific nuances. Further, it is unclear how [14] can be extended
to deal with new domains that may be encountered after the initial training.
In the computer vision literature, several adaptations of batch normalization
(BN) [16] have been suggested for domain adaptation [17,18] and multi-domain
learning [15,19] for object recognition using CNNs. Broadly, these works employ
BN for domain-specific scaling to account for domain shifts, while sharing the
bulk of the CNN parameters to leverage the similarity between the domains.
In this work, we extend approaches based on adaptive BN layers for seg-
mentation across scanning protocols in a lifelong learning setting. In particular,
we train a CNN with common convolutional filters and specific BN parameters
for each protocol/scanner. The network is initially trained with images from a
few scanners to learn appropriate convolutional filters. It can then be adapted
to new protocols/scanners by fine-tuning the BN parameters with only a few
labelled images. Crucially, this is achieved without performance degradation on
the older scanners, whose training data is not available after the initial training.

2 Method

Batch normalization (BN) was introduced in [16] to enable faster training of
deep neural networks by preventing saturated gradients via normalization of
inputs before each non-linear activation layer. In a BN layer, each batch zp is
normalized as shown in Eq.1. During training, up and 0% are the mean and
variance of xp, while at test time, they are the estimated population mean
and variance as approximated by a moving average over training batches. v, §
are learnable parameters that allow the network to undo the normalization, if
required. Inspired by [15], we propose to use separate batch normalization for
each protocol/scanner.

B — UB
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Notwithstanding variations in image statistics due to inter-scanner differ-
ences, a segmentation network would be confronted with images of the same
organ, acquired with the same modality (MR). Hence, it is reasonable to postu-
late common characteristics between the domains and thus, shared support in
an appropriate representation space. Following [15], we hypothesize that such a
representation space can be found by using domain-agnostic convolutional filters
and that the inter-domain differences can be handled by appropriate normaliza-
tion via domain-specific BN modules. This approach is not only in line with
the previous domain adaptation works [18], but also embodies the normalization
idea of conventional proposals for dealing with inter-scanner variations [9-11].
Further, like [19], once suitable shared convolutional filters have been learned,
we adapt the domain-specific BN layers to new related domains.

BN(zp) =7 x + (1)
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The training procedure in our framework is as follows. We use superscript
% to indicate a network with domain-specific BN layers. We initially train a
network, N{’g___d on d domains, with shared convolutional filters and separate
BN parameters, bny, for each domain Dj. During training, each batch consists
of only one domain, with all domains covered successively. In a training iter-
ation when the batch consists of domain Dy, bn, for k' #k are frozen. Now,
consider a new domain Dg1, with a few labelled images Ip, ,. We split this
small dataset into two halves, using one for training, Igdﬂ and the other for

validation, IHHI. We evaluate the performance of N , on I}%,:Hl7 using each
learned bng, k = 1,2,---d. If bng« leads to the best accuracy, we infer that
among the already learned domains, Dy« is the closest to Dyy1. Then, keeping
the convolutional filter weights fixed, an additional set of BN parameters bng41
is initialized with bng~ and fine-tuned using Igd , with standard stochastic gra-
dient descent minimization. The optimization is stopped when the performance
on I}’)ldﬂ stops improving. Now, the network can segment all domains Dy, for
k=1,2,...d,d+ 1 using their respective bny.

In the spirit of lifelong learning, this approach allows learning on new domains
with only a few labelled examples. This is enabled by utilizing the knowledge
obtained from learning on the old domains, in the form of the trained domain-
agnostic parameters. The fact that the number of domain-specific parameters is
small comes with two advantages. One, that they can be tuned for a new domain
by training with a few labelled images quickly and with minimal risk of overfit-
ting. Secondly, they can be saved for each domain without significant memory
footprint. Finally, catastrophic forgetting [20] by performance degradation on
previous domains does not arise in this approach by construction because of the
explicit separate modeling of shared and private parameters.

3 Experiments and Results

Datasets: Brain MR datasets from several scanners, hospitals, or acquisition
protocols are required to test the applicability of the proposed method for life-
long multi-domain learning. To the best of our knowledge, there are only a few
publicly available brain MRI datasets with ground truth segmentation labels
from human experts. Therefore, we use FreeSurfer [1] to generate pseudo ground
truth annotations. While annotations from human experts would be ideal, we
believe that FreeSurfer annotations can serve as a reasonable proxy to test our
approach to lifelong multi-scanner learning.

We use images from 4 publicly available datasets: Human Connectome
Project (HCP) [21], Alzheimer’s Disease Neuroimaging Initiative (ADNI)!,
Autism Brain Imaging Data Exchange (ABIDE) [22] and Information eXtrac-
tion from Images (IXI)2. The datasets are split into different domains, as shown
in Table 1. Domains Dy, Ds, D3 are treated as initially available, and Dy, D5 as

! adni.loni.usc.edu.
2 brain-development.org/ixi-dataset /.
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Table 1. Details of the datasets used for our experiments.

Domain | Dataset Field | MR Modality | ntrain nffg?ffh Ntest
D: HCP 3T Tlw 30 30 20
D, HCP 3T | T2w 30 30 20
D3 ADNI 1.5T | T1w 30 30 20
Dy ABIDE, Caltech | 3T Tlw 4 20 20
Ds IXT 3T T2w 4 20 20

new. The number of training and test images for each domain indicated in the
table are explained later while describing the experiments.

Training Details: While the domain-specific BN layers can be incorporated
in any standard CNN, we work with the widely used U-Net [2] architecture
with minor alterations. Namely, our network has a reduced depth with three
max-pooling layers and a reduced number of kernels: 32, 64, 128, 256 in the con-
volutional blocks on the contracting path and 128, 64, 32 on the upscaling path.
Also, bilinear interpolation is preferred to deconvolutional layers for upscaling in
view of potential checkerboard artifacts [23]. The network is trained to minimize
the dice loss, as introduced in [24] to reduce sensitivity to imbalanced classes.
Per image volume, the intensities are normalized by dividing by their 98" per-
centile. The initial network trains in about 6 h, while the domain-specific BN
modules can be updated for a new domain in about 1 h, on a Nvidia Titan Xp
GPU.

Experiments: We train three types of networks, as described below.

e Individual networks Ny: Trained for each domain d, with njcretch

roinCt training
images (see Tablel). For the known domains (D;, D2, Ds), the accuracy
of N, serves as a baseline that the other networks with shared parameters
must preserve. For the new domains (D4, Ds), the performance of Ny is
the benchmark that we seek to achieve by training on much fewer training
examples (nyrqin) and using the knowledge of the previously learned domains.

e A shared network Nio3: Trained on Dy, D, D3 with e, images, with all
parameters shared including the BN layers, bng. In contrast to the training
regime of Nfg,_“d described in Sect. 2, while training Nj23 each batch ran-
domly contains images from all domains to ensure that the shared BN param-
eters can be tuned for all domains. Histogram equalization [25] is applied to a
new domain Dy before being tested Nio3. For adapting Nya3 to Dy, all param-
eters are fine-tuned with ng.q;n images of the new domain and the modified
network is referred to as Nia3_.4-

e A lifelong multi-domain learning network V. {’ggz Trained on D1, D5, D3, with
shared convolutional layers and domain-specific BN layers. The updated net-
work after extending N, for a new domain D, according to the procedure
described in Sec. 2 is called Nj23 g+_.q, where k* is the closest domain to Dy.
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Table 2. Segmentation dice scores for different domains for the three different types
of networks, trained as explained in the experiments section.

Network | Test BN | Thal | Hipp | Amyg | Ventr | Caud | Puta | Pall | Avg
N; D1 bn; | 0.9190.861|0.849 |0.901 | 0.9 0.88710.747 | 0.866
N Do bny | 0.9120.84 |0.836 |0.891 | 0.889 | 0.876 | 0.736 | 0.854
N3 D3 bns | 0.913]0.872|0.81 |0.944 | 0.864 | 0.879 | 0.853 | 0.876
Ny Dy bny | 0.924]0.879|0.853 |0.933 | 0.912 | 0.9 0.851 | 0.893
Ns Ds bns | 0.884 1 0.79 |0.773 |0.803 | 0.793 | 0.818 | 0.791 | 0.81
Nio3 D1 bn, | 0.909 | 0.846 | 0.824 | 0.891 | 0.878 | 0.877 | 0.745 | 0.853
Ni23 Do bn, | 0.8880.838|0.815 | 0.876 | 0.863 | 0.86 |0.701 | 0.834
Ni2s D3 bn, | 0.9050.851|0.792 | 0.938 | 0.863 | 0.873 | 0.828 | 0.864
Ni2s Dy bn, | 0.745]0.249 | 0.057 | 0.787 | 0.428 | 0.324 | 0.071 | 0.38
Nios D4 HistEq bns | 0.641]0.428 | 0.175 | 0.754 | 0.628 | 0.579 | 0.303 | 0.501
Ni23—a |Dus bn, | 0.91 |0.856|0.74 |0.922 |0.894 |0.859 | 0.786 | 0.852
Ni2z—s |D1 bn, | 0.869 | 0.809 | 0.773 | 0.867 | 0.861 | 0.722 | 0.667 | 0.795
Ni2z—a | Do bn, | 0.676 | 0.418|0.512 | 0.105 | 0.635 | 0.4 0.411 | 0.451
Ni2s—a |Ds3 bn, | 0.8010.762|0.65 |0.753 |0.728 | 0.715|0.772 | 0.74
Ni2s Ds bns | 0.418 1 0.178 | 0.182 |0.438 | 0.268 | 0.197 | 0.025 | 0.244
Ni2s Ds, misteq | bng | 0.294]0.143|0.16 | 0.437 | 0.261 |0.293 | 0.01 |0.228
Ni2z—5 |Ds bn, | 0.8610.777{0.761 |0.799 |0.76 |0.796 | 0.741 | 0.785
Ni2s—s | Dy bn, | 0.2670.022{0.173 |0.004 | 0.05 |0.002|0.004 | 0.075
Ni2s—s | Do bn, | 0.5740.574|0.564 | 0.739 | 0.657 | 0.521 | 0.526 | 0.594
Ni2z—s | D3 bn, | 0.147/0.029|0.16 |0.006 |0.114 |0.039 | 0.003 | 0.071
N’{S;;, Dy bn; | 0.916 | 0.852|0.84 |0.894 1 0.893 | 0.884 | 0.729 | 0.858
Néz. D, bny | 0.91 |0.853|0.843 | 0.887 | 0.882|0.873 | 0.749 | 0.857
Néz. Ds bns | 0.9110.868|0.818 |0.944 | 0.867 | 0.879 | 0.846 | 0.876
N11"213 Dy bn; | 0.621|0.288 | 0.218 | 0.173 | 0.676 | 0.576 | 0.457 | 0.43
Nbz. Dy bny | 0.162 |0 0.001 |0.001 0.04 |0.017|0 0.032
Néz. Dy bns | 0.721]0.271|0.305 | 0.549 | 0.569 | 0.515 | 0.297 | 0.461
Nl{’213’3_,4 Dy bny | 0.8780.83 |0.772 |0.907 | 0.875|0.852 | 0.772 | 0.841
Nz, Ds bn; | 0.001|0.019|0.062 | 0.008 | 0.004 |0 0 0.013
N’{S;; Ds bns | 0.3540.123 | 0.268 | 0.225 | 0.407 | 0.276 | 0.366 | 0.288
Néz. Ds bns | 0 0.0030.031 |0.001 |0 0 0 0.005
Nl{33,2ﬂ5 Ds bns | 0.774 ] 0.687 | 0.687 | 0.761 | 0.669 | 0.714 | 0.713 | 0.715

Results: All networks are evaluated based on their mean Dice score for nges:
images from the appropriate domain (see Table 1). Quantitative results of our
experiments are shown in Table 2. The findings can be summarized as follows:
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e Nio3 preserves the performance of Nj, No, N3. Thus, a single network
can learn to segment multiple domains, provided sufficient training data is
available from all the domains at once. However, its performance severely
degrades for unseen domains D4 and Ds. Histogram equalization (denoted
by Dy Histq) to the closest domain is unable to improve performance signifi-
cantly, while fine-tuning the network for the new domains causes catastrophic
forgetting [20], that is, degradation in performance on the old domains.

e NI also preserves the performance of Ny, No, N3. For a new domain Dy,
using the bnz parameters of the trained N{’gg leads to the best performance.
Thus, we infer that D3 is the closest to Dy among Dy, Do, D3. After fine-
tuning the parameters of BN3 to obtain those of BNy, the dice scores for all
the structures improve dramatically and are comparable to the performance
of Ny. Crucially, as the original bny, for k = 1, 2, 3 are saved, the performance
on D1, Da, D3 in the updated network N{’5’373_4 is exactly the same as in NVZ,.
Similar results can be seen for the other new domain, D5. The improvement
in the segmentations for new domains after fine-tuning the BN parameters
can also be observed qualitatively in Fig. 2.

a

d e
Fig. 2. Qualitative results: (a) images from domains Dg, segmentations predicted by

(b) N¥23, bng=, (c) leg&k*_,d, bng, (d) Ng and (e) ground truth annotations, with {d,
k*} as {4, 3} (top) and {5, 2} (bottom).

4 Conclusion

In this article, we presented a lifelong multi-domain learning approach to learn
a segmentation CNN that can be used for related MR modalities and across
scanners/protocols. Further, it can be adapted to new scanners or protocols with
only a few labelled images and without degrading performance on the previous
scanners. This was achieved by learning batch normalization parameters for each
scanner, while sharing the convolutional filters between all scanners. In future
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work, we intend to investigate the possibility of extending this approach to MR
modalities that were not present during the initial training.

To the best of our knowledge, this is the first work to tackle the lifelong

machine learning problem for CNNs in the context of medical image analysis.
We believe that this may set an important precedent for more research in this
vein to handle data distribution changes which are ubiquitous in clinical data.
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