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Abstract. Shape has widely been used in medical image segmentation
algorithms to constrain a segmented region to a class of learned shapes.
Recent methods for object segmentation mostly use deep learning algo-
rithms. The state-of-the-art deep segmentation networks are trained with
loss functions defined in a pixel-wise manner, which is not suitable for
learning topological shape information and constraining segmentation
results. In this paper, we propose a novel shape predictor network for
object segmentation. The proposed deep fully convolutional neural net-
work learns to predict shapes instead of learning pixel-wise classification.
We apply the novel shape predictor network to X-ray images of cervi-
cal vertebra where shape is of utmost importance. The proposed net-
work is trained with a novel loss function that computes the error in the
shape domain. Experimental results demonstrate the effectiveness of the
proposed method to achieve state-of-the-art segmentation, with correct
topology and accurate fitting that matches expert segmentation.

1 Introduction

Shape is a fundamental topic in medical image computing and particularly
important for segmentation of known objects in images. Shape has been widely
used in segmentation methods, like the statistical shape model (SSM) [1] and
level set methods [2], to constrain a segmentation result to a class of learned
shapes. Recently proposed deep fully convolutional neural networks show excel-
lent performance in segmentation tasks [3,4]. However, the neural networks are
trained with a pixel-wise loss function, which fails to learn high-level topological
shape information and often fails to constrain the object segmentation results
to possible shapes (see Fig. 1a–c). Incorporating shape information in deep seg-
mentation networks is a difficult challenge.

In [6], a deep Boltzmann machine (DBM) has been used to learn a shape prior
from a training set. The trained DBM is then used in a variational framework to
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Fig. 1. (a–c) Advantage of shape prediction over pixel-wise classification (a) a noisy
test image (b) segmentation result from a state-of-the-art deep network [5] (c) predicted
shape from the proposed shape predictor network, SPNet. The green curve (−) repre-
sents the manually annotated vertebral boundary and the blue curve (−) represents the
vertebral boundary of the predicted vertebra. The proposed SPNet can constrain the
predicted shape to resemble a vertebra-like structure where the pixel-wise classification
network failed in the presence of a strong image artifact. (d–f) Examples of a training
vertebra (d) original image with manually annotated vertebral boundaries (e) pixels at
the zero-level set (f) signed distance function. Darker tone represents negative values.
(Color figure online)

perform object segmentation. A multi-network approach for incorporating shape
information with the segmentation results was proposed in [7]. It uses a convolu-
tional network to localize the segmentation object, an autoencoder to infer the
shape of the object, and finally uses deformable models, a version of SSM, to
achieve segmentation of the target object. Another method for localization of
shapes using a deep network is proposed in [8] where the final segmentation is
performed using SSM. All these methods consist of multiple components which
are not trained in an end-to-end fashion and thus cannot fully utilize the excel-
lent representation learning capability of neural networks for shape prediction.
Recently, two methods were proposed which utilize a single network to achieve
shape-aware segmentation. The method proposed in [9] uses a shallow convolu-
tional network which is trained in two-stages. First, the network is trained in
a supervised manner. Then the network is fine-tuned by using unlabelled data
where the ground truth are generated with the help of a level set-based method.
In contrast, the work presented in [5], proposed a shape-based loss term for
training a deep segmentation network. However, both of these methods still use
a cross-entropy loss function which is defined in a pixel-wise manner and thus
not suitable to learn high-level topological shape information and constraints.
In contrast to these methods, we propose a novel deep fully convolutional neural
network, that is able to predict shapes instead of classifying each pixel sepa-
rately. To the best of our knowledge, this is the first work that uses a fully
convolutional deep neural network for shape prediction. We apply the proposed
shape predictor network for segmentation of cervical vertebra in X-ray images
where shape is of utmost importance and has constrained variation limits.

Most of the work in vertebra segmentation involves shape prediction [10,11].
Given the fact that a vertebra in an X-ray image mostly consists of homogeneous
and noisy image regions separated by edges, active shape model and level set-
based methods can be used to evolve a shape to achieve a segmentation [1,2,12].
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While these methods work relatively well in many medical imaging modalities,
inconsistent vertebral edges and lack of a difference in image intensities inside
and outside the vertebra limits the performance of these methods in clinical
X-ray image datasets.

Our proposed network is closely related to the state-of-the-art work on cer-
vical vertebrae [5,13]. As mentioned earlier, [5] proposed a shape-based term
in the loss function for training a segmentation network, UNet-S. The modified
UNet [3] architecture produces a segmentation map for the input image patch
which is defined over the same pixel space as the input. The UNet was further
modified in [13], to achieve probabilistic spatial regression (PSR). Instead of clas-
sifying each pixel, the PSR network was trained to predict a spatially distributed
probability map localizing vertebral corners.

In this work, we modify this UNet architecture to generate a signed distance
function (SDF) from the input image. The predicted SDF is converted to shape
parameters compactly represented in a shape space, in which the loss is com-
puted. The contributions of this paper are two-fold: we propose (1) an innovative
deep fully convolutional neural network that predicts shapes instead of segmen-
tation maps and (2) a novel loss function that computes the error directly in the
shape domain in contrast to the other deep networks where errors are computed
in a pixel-wise manner. We demonstrate that the proposed approach outper-
forms the state-of-the-art method with topologically correct results, particularly
on more challenging cases.

2 Dataset and Ground Truth Generation

This work utilizes the same dataset of lateral cervical X-ray images used in [5,13].
The dataset consists of 124 training images and 172 test images containing 586
and 797 cervical vertebrae, respectively. The dataset is collected from hospital
emergency rooms and is full of challenging cases. The vertebra samples include
low image intensity, high noise, occlusion, artifacts, clinical conditions such as
osteophytes, degenerative change, and bone implants. The vertebral boundary of
each vertebra in the dataset is manually annotated by expert radiologists (blue
curve in Fig. 1d). The training vertebra patches were augmented using multiple
scales and orientation angles. A total of 26,370 image patches are used for train-
ing the proposed deep network. The manual annotation for each of the training
vertebrae is converted into a signed distance function (SDF). To convert the
vertebral shapes into an SDF (Φ), the pixels lying on the manually annotated
vertebral boundary curve have been assigned zero values. Then all other pixels
are assigned values based on the infimum of the Euclidean distances between
the corresponding pixel and the set of pixels with zero values. Mathematical
details can be found in the supplementary materials. An example of the train-
ing vertebra with corresponding zero-level set pixels and SDF are illustrated
in Fig. 1d–f. After converting all the training vertebral shapes to corresponding
signed distance functions, principal component analysis (PCA) is applied. PCA
allows each SDF (Φ) in the training data to be represented by a mean SDF (Φ̄),
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matrix of eigenvectors (W ) and a vector of shape parameters, b:

φ = φ̄ + Wb, (1)

where φ and φ̄ are the vectorized form of Φ and Φ̄, respectively. For each training
example, we can compute b as:

b = WT (φ − φ̄) = WTφd, (2)

where φd is the vectorized difference SDF, Φd = Φ − Φ̄. These parameters are
used as the ground truth (bGT ) for training the proposed network.
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Fig. 2. SPNet: shape predictor network (a) network architecture (b) legend.

3 Methodology

To choose an appropriate network architecture for the application in hand, we
follow the state-of-the-art work on cervical vertebrae [5,13]. We note that the
choice can be altered based on the application, the complexity of the model and
the available memory in the system for training. Our proposed shape predictor
network, SPNet, takes a 64 × 64 vertebral image patch as input and produces
its related difference SDF (Φ̂d) which is also defined over the same pixel space.
We use the same network architecture as [13]. However, the final normalization
layer has been removed. Instead, the last convolution layer outputs the difference
signed distance function (Φ̂d) which is then sent to the final layer where it is
converted to shape parameter vector (b̂) and compared with the ground truth
(bGT ). The network is illustrated in Fig. 2.

The forward pass through the final layer can be summarized below. First,
the output of the last convolutional layer of the SPNet (Φ̂d) is vectorized as φ̂d.
Then the final prediction of network is computed as b̂:

b̂ = WT φ̂d or in the element-wise form: b̂i =
k∑

j=1

wij φ̂dj
, i = 1, 2, · · · , k; (3)
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where wij is the value at the i-th row and j-th column of the transposed eigen-
vector matrix (WT ) and k is the number of shape parameters. Finally, the loss
is defined as:

L =
k∑

i=1

Li where Li =
1
2
(b̂i − bGT

i )2. (4)

The predicted shape parameter vector, b̂, has the same length as φ̂d which is
64 × 64 = 4096. The initial version of the proposed network is designed to
generate the full length shape parameter vector. However, the final version of
the network is trained to generate fewer parameters which will be discussed in
Sect. 5.

4 Experiments

The proposed network (SPNet) has been trained on a system with an NVIDIA
Pascal Titan X GPU1 for 30 epochs with a batch-size of 50 images. The network
took approximately 22 h to train. We have also implemented a traditional convo-
lutional neural network (CNN) where we predict the shape parameter vector b
directly using a Euclidean loss function. The network consists of the contracting
path of the proposed SPNet architecture, followed by two fully connected (FC)
layers which regress the 4096 b-parameters at the output. This network will
be mentioned as SP-FCNet in the following discussions. The SPNet has only
24,237,633 parameters where the SP-FCNet network has 110,123,968 trainable
parameters. The FC layers cause a significant increase in the number of parame-
ters. For comparison, we also show results of vertebral shape prediction based on
the Chan-Vese level set segmentation method (LS-CV) [2,14]. Apart from these,
we also compare our results with the segmentation networks described in [5]. Fol-
lowing their conventions, the shape-aware network will be referred to as UNet-S
and the non-shape-aware version as UNet. The foreground predictions of these
networks have been converted into shapes by tracking the boundary pixels. For
the shape predictor networks, SPNet and SP-FCNet, the predicted b-parameters
are converted into a signed distance function using Eq. 1. The final shape is then
found by locating the zero-level set of this function. We compare the predicted
shapes with the ground truth shapes using two error metrics: the average point
to ground truth curve error (Ep2c) and the Hausdorff distance (dH) between the
prediction and ground truth shapes. Both metrics are reported in pixels.

5 Results

We first compare the three shape prediction methods in Table 1. We report
the mean and standard deviation of the metrics over 797 test vertebrae. The
Chan-Vese method (LS-CV) achieves an average Ep2c of 3.11 pixels, whereas the

1 We gratefully acknowledge the support of NVIDIA Corporation with the donation
of the Titan X Pascal GPU used for this research.
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fully connected version of the shape predictor network (SP-FCNet) achieves 2.27
pixels and the proposed UNet-based shape predictor network (SPNet) achieves
only 1.16 pixels. Hausdorff distance (dH) shows more difference between the LS-
CV and the deep networks. The comparison also illustrates how the proposed
SPNet is superior to its traditional CNN-based counterpart, SP-FCNet. Both
of these networks predict the shape parameter vector (b̂) and the final loss is
computed using Euclidean distance. It is the proposed SPNet’s capabilities of
generating the difference SDF (Φ̂d) and backpropagating the Euclidean loss on
the SDF (Eq. 4) that make it perform better.

Table 1. Comparison of shape prediction methods.

Metrics Average Ep2c (pixel) Average dH (pixel)

Methods Mean Std Mean Std

LS-CV 3.11 1.13 10.94 3.68

SP-FCNet 2.27 0.83 6.74 3.25

SPNet (proposed) 1.16 0.66 4.11 3.13

Both of the deep networks have been trained to regress all 4096 shape param-
eters which are related to the corresponding eigenvectors. As the eigenvectors
are ranked based on their eigenvalues, eigenvectors with small eigenvalues often
result from noise and can be ignored. We evaluated the trained SPNet on a vali-
dation set at test time by varying the number of predicted parameters. The best
performance was observed when only the first 18 b-parameters are kept which
represents 98% of the total variation in the training dataset.

Table 2. Quantitative comparison of different methods.

Metrics Average Ep2c (pixel) Average dH (pixel) nV mR Fit failure

Methods Mean Std Mean Std (FF ) %

LS-CV 3.107 1.13 10.94 3.68 0 85.45

SP-FCNet-18 2.082 0.78 6.48 3.32 0 43.54

UNet 1.114 1.29 5.06 6.11 57 8.53

UNet-S 0.999 0.67 4.37 4.02 45 6.02

SPNet-18 0.996 0.55 4.17 3.06 0 4.14

Based on this insight, we modified both versions of our deep networks to
regress only 18 b-parameters and retrained the networks from randomly initial-
ized weights. We report the performance of the retrained networks in Table 2.
We also report the metrics for UNet and UNet-S networks from [5]. It can be
seen that our proposed SPNet-18, outperforms all other networks quantitatively.
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Fig. 3. Cumulative error curves (a) average Ep2c and (b) average dH .

However, the improvement over UNet-S in terms of the Ep2c metric is small and
not statistically significant according to the paired t-test at a 5% significance
level. Quantitative improvements for SPNet-18 over all other cases pass the sig-
nificance test.

The most important benefit of the proposed SPNet over the UNet and UNet-
S is that the loss is computed in the shape domain, not in a pixel-wise manner.
In the fifth column of the Table 2, we report the number of test vertebrae with
multiple disjoint predicted regions (nV mR). The pixel-wise loss function-based
networks learn the vertebral shape implicitly, but this does not prevent multiple
disjoint predictions for a single vertebra. The UNet and UNet-S produce 57 and
45 vertebrae, respectively with multiple predicted regions, whereas the proposed
network does not have any such example indicating that the topological shape
information has been learned based on the seen shapes. A few examples of these
can be found in Fig. 4. We have also reported the fit failure (FF ) for all the
compared methods. Similar to [5], the FF is defined as the percentage of the
test vertebrae having an Ep2c of greater than 2 pixels. The proposed SPNet-18
achieves the lowest FF . The cumulative error curves of the metrics are shown
in Fig. 3. The performance of the proposed method is very close with the UNet
and UNet-S in terms of the Ep2c metric. But in terms of the Hausdorff distance
(dH), the proposed method achieves noticeable improvement.

Moreover, the qualitative results in Fig. 4 distinctively demonstrate the ben-
efit of using the proposed method. The UNet and UNet-S predict a binary mask
and the predicted shape is located by tracking the boundary pixels. This is
why the shapes are not smooth. In contrast, the proposed SPNet predicts b-
parameters which are then converted to signed distance functions. The shape
is then located based on the zero-level set of this function, resulting in smooth
vertebral boundaries defined to the sub-pixel level which resembles the manually
annotated vertebral boundary curves.

The worst performance is exhibited by the Chan-Vese method, LS-CV.
The results of SP-FCNet-18 are better than the traditional Chan-Vese model,
but underperform compared to the UNet-based methods. The reason can be
attributed to the loss of spatial information because of the pooling operations.
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Fig. 4. Qualitative results: predicted shape (−) and ground truth (−).

The UNet-based methods recover the spatial information in the expanding path
by using concatenated data from the contracting path, thus perform much bet-
ter than the fully connected version of the deep networks. Some relatively easy
examples are shown in Fig. 4a and b. More challenging examples with bone
implants (Fig. 4c), abrupt contrast change (Fig. 4d), clinical condition (Fig. 4e)
and low contrast (Fig. 4f) are also reported. It can be seen even in these difficult
situations, the SPNet-18 method predicts shapes which resembles a vertebra
where the pixel-wise loss function-based UNet and UNet-S predict shapes with
unnatural variations. More qualitative examples and further results with a fully
automatic patch extraction process are illustrated in the supplementary mate-
rial, demonstrating our method’s capability of adjusting to variations in scale,
orientation, and translation of the vertebral patch.

6 Conclusion

In this paper, we have proposed a novel method which exploits the excellent
representation learning capability of the deep networks and the pixel-to-pixel
mapping capability of the UNet-like encoder-decoder architectures to generate
object shapes from the input images. Unlike the pixel-wise loss function-based
segmentation networks, the loss for the shape predictor network is computed in
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the shape parameter space. This encourages better learning of high-level topo-
logical shape information and restricts the predicted shapes to a class of training
shapes.

The proposed shape predictor network can also be adapted for segmentation
of other organs in medical images where preservation of the shape is impor-
tant. The network proposed in this paper is trained for segmentation of a single
object in the input image. However, the level set method used for ground truth
generation is inherently capable of representing object shapes that go through
topological changes. Thus, given an appropriate object dataset, the same net-
work can be used for segmentation of multiple and a variable number of objects
in the input image. Similarly, the level set method can also be used to rep-
resent 3D object shapes. By replacing the UNet-like 2D deep network with a
VNet-like [4] 3D network, our proposed method can be extended for 3D shape
predictions. In future work, we plan to investigate the performance of our shape
predictor network for segmentation of multiple and 3D objects.
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