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Abstract. In the clinical routine, short axis (SA) cine cardiac MR
(CMR) image stacks are acquired during multiple subsequent breath-
holds. If the patient cannot consistently hold the breath at the same posi-
tion, the acquired image stack will be affected by inter-slice respiratory
motion and will not correctly represent the cardiac volume, introducing
potential errors in the following analyses and visualisations. We propose
an approach to automatically correct inter-slice respiratory motion in SA
CMR image stacks. Our approach makes use of probabilistic segmenta-
tion maps (PSMs) of the left ventricular (LV) cavity generated with
decision forests. PSMs are generated for each slice of the SA stack and
rigidly registered in-plane to a target PSM. If long axis (LA) images are
available, PSMs are generated for them and combined to create the tar-
get PSM; if not, the target PSM is produced from the same stack using a
3D model trained from motion-free stacks. The proposed approach was
tested on a dataset of SA stacks acquired from 24 healthy subjects (for
which anatomical 3D cardiac images were also available as reference) and
compared to two techniques which use LA intensity images and LA seg-
mentations as targets, respectively. The results show the accuracy and
robustness of the proposed approach in motion compensation.

1 Introduction

Cardiovascular magnetic resonance (CMR) imaging is the reference technique
regarding several applications for the anatomical and functional assessment of
the heart [1]. While fast SSFP sequences allow the direct acquisition of an
anatomical 3D image (A3D) of the whole heart, they are usually limited by
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either relatively poor image quality or low temporal resolution, making them
often unsuitable for accurate functional assessment. The most common CMR
sequence currently used in the clinical practice is still the short axis (SA) SSFP
cine, consisting of 10–14 parallel slices and 20–30 frames per cardiac cycle. SA
cine stacks are generated during multiple breath-holds (i.e. 1–3 slices acquired
per each breath-hold). Although the subjects are instructed to hold their breath
at the same breath-hold position, in practice the heart location can vary consider-
ably. If the differences between the breath-hold positions are large, the acquired
image stack will be affected by inter-slice motion and not correctly represent
the cardiac volume, introducing potential errors in the following analyses and
visualisations.

Related Work. Several approaches for SA stack motion correction (MC) have
been proposed in the literature. Among the techniques that make use of rou-
tinely acquired CMR images, Lotjonen et al. [2] proposed to perform in-plane
rigid registration of each SA slice to LA images, used as target. Sinclair et al. [3]
implemented a similar approach using LV segmentations (obtained using a fully-
convolutional neural network, FCN) instead of the actual images. A very similar
technique was also developed by Yang et al. [4], which also included a shape
model to better retrieve the actual motion of the myocardium throughout the
cardiac cycle. An alternative approach, which has the advantage of being appli-
cable even if LA images are not available, consists in implicitly incorporating
correct representations of the heart into a model trained from motion-free stacks,
and in using it to perform motion correction. For instance, Oktay et al. [5] pro-
posed to associate each SA slice with a set of probabilistic edge maps (PEMs)
outlining the myocardial contours in the same slice as well as in the adjacent
one, and to then perform rigid registration between the obtained PEMs.

Contributions. In this paper, we propose a comprehensive approach to auto-
matically correct inter-slice respiratory motion in SA CMR image stacks. Our
approach makes use of probabilistic segmentation maps (PSMs) of the left ven-
tricular (LV) cavity generated with hybrid decision forests. PSMs are generated
for each slice of the SA stack and rigidly registered in-plane to a target PSM.
The main contributions of the paper are the following:
– The proposed approach includes two different techniques: if LA images are

available, PSMs are generated from them and combined to create the target
PSM. If not, the target PSM is produced from the same stack using a 3D
model trained from motion-free stacks;

– If LA images are available, the hybrid forests estimate from them at once
both PSMs and landmarks locations for the apex and the mitral valve, which
are used to restrict motion correction to the slices of the SA stack between
them, thus limiting potential spurious results especially in the basal region;

– The proposed approach was tested on a dataset acquired from 24 healthy
subjects (for which anatomical 3D cardiac images were also available as ref-
erence) and compared to two techniques which use LA intensity images and
LA segmentations (generated using FCNs) as targets, respectively. Testing
was also performed after training the techniques on a different dataset to
assess their generalisation properties.
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2 Methods

Hybrid Decision Forests. A decision tree consists in the combination of split
and leaf nodes arranged in a tree-like structure [6]. Decision trees route a sample
x ∈ X (in our case an image patch) by recursively branching left or right at
each split node j until a leaf node k is reached. Each leaf node is associated
with a posterior distribution p(y|x) for the output variable y ∈ Y. Each split
node j is associated with a binary split function h(x,θj) ∈ {0, 1}, defined by the
set of parameters θj . During training, at each node the goal is to find the set of
parameters θj which maximizes a previously defined information gain Ij , that is
usually defined as Ij = H(Sj)−

∑
i∈{0,1} |Si

j |/|Sj |·H(Si
j), where Sj , S0

j and S1
j are

respectively the training set arriving at node j, leaving the node to the left and
to the right. H(S) is the entropy of the training set, whose construction depends
on the task at hand (e.g. classification, regression). Different types of nodes
(maximizing different information gains) can be interleaved within a single tree
structure, thus called hybrid. In the present technique structured classification
nodes (aiming at the generation of a PSM of the LV cavity) and regression nodes
(aiming at landmark localisation) are combined [7]. During testing, the posterior
distributions of the different trees are combined using an ensemble model.

Structured classification nodes associate to each image patch x a label y ∈ Y
consisting of a segmentation of the LV cavity within x. Structured labels at each
split node can be clustered into two subgroups depending on some similarity
measure between them following a two-step procedure [8]. First, Y is mapped
to an intermediate space Z by means of the function Π : Y → Z where the
distance between labels can be computed. Then, PCA is applied to the vectors
z to map the associated labels y into a binary set of labels c ∈ C = {0, 1}: this is
achieved by applying a binary quantization to the principal component of each
z vector. Finally, the Shannon entropy HSC(S) = −∑

c∈C p(c)log
(
p(c)

)
can be

adopted, with p(c) indicating the empirical distribution extracted from training
set at the each node. Differently from [7], in which edge maps were generated,
to estimate segmentation maps we adopted the mapping

Π : z = [y(j1) = y(j2) = 0] ⊕ [y(j1) = y(j2) = 1] ∀j1 �= j2,

where j1 and j2 are indices spanning every pixel in y. This mapping encodes
for each pair of pixels in y whether they are both equal to 0 and whether they
are both equal to 1, allowing the correct clustering of the labels at each node
based on their similarity. At testing time, each sample patch of the test image
is sent down each tree of the forest, and the segmentation maps stored at each
selected leaf node are averaged producing a smooth segmentation map (PSM)
of the LV cavity. The values in the PSM are proportional to the certainty in LV
cavity detection, and can be used to assess the reliability of the prediction.

Regression nodes associate to each image patch x a label D =
(d1,d2, . . . ,dL), where dl represents for each of the L landmarks (LMs) the
N -dimensional displacement vector from the patch centre to the landmark loca-
tion [7]. The information gain used for regression nodes minimizes the determi-
nant of the full covariance matrix |Λ(S)| defined by the landmark displacement
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vectors: HR(S) = 1
2 log

(
(2πe)d|Λ(S)|. The regression information is stored at

each leaf node k using a parametric model following a N · L-dimensional mul-
tivariate normal distribution with dl

k and Σl
k mean and covariance matrices,

respectively. At testing time, for each landmark, Hough vote maps are gener-
ated by summing up the regression posterior distributions obtained from each
tree for each patch [7]. Finally, the locations of the landmarks are determined by
identifying the pixel with the highest value on each of the L Hough vote maps.

For training, the extracted features are multi-resolution image intensity,
histogram of gradients (HoG) and gradient magnitude, exactly as in [7]. The
described hybrid random forest approach is used to build several models: three
for LA images (extracting at once PSMs and landmarks for the apex and the
mitral valve) and two for the SA stacks (extracting 2D and 3D PSMs, respec-
tively). These models are then used to perform motion correction with two dif-
ferent possible pipelines, depending on the availability of LA images.

Fig. 1. Pipeline for motion correction using LA PSMs as target.

Motion Correction with LA PSMs (MC LA PSMs). This method relies
on 2D SA PSMs generated from the motion-corrupted stack and on LA PSMs
(together with landmarks), which are used as target (see Fig. 1). First, LA PSMs
are rigidly registered (by 3D translation only, using normalized cross-correlation,
NCC, as similarity metric) to the SA PSM stack to compensate for potential
motion between different acquisitions. Then, for each slice of the SA PSM stack,
the three registered LA PSMs are resampled and combined into a single image
(referred to as LA PSM combined) containing the sections of the LA PSMs
with respect to a specific slice. Finally, in-plane rigid registration (by translation
only, using NCC) is performed between each SA PSM slice and the associated
LA PSM combined, and the estimated translation is applied to the SA slice,
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thus performing the correction. These two steps (LA PSMs registration to the
SA PSMs stack, and slice-by-slice SA PSMs registration to LA PSMs combined)
are iterated until the maximum translation estimated within the stack is less
than two pixels, which usually happens within the first 4 iterations. While this
iterative registration scheme is similar to previously published ones [3], a major
novelty is that not all the slices of the SA stack actually undergo motion correc-
tion: a slice is corrected only if (a) its peak PSM value is above a threshold Tm

and (b) it lies between the median apex and median mitral valve points (defined
as medians of the landmark sets identified on the LA images). This allows the
exclusion of slices outside the LV or with unreliable LV cavity detection.

Fig. 2. Pipeline for motion correction using a 3D SA PSM as target.

Motion Correction with 3D SA PSMs (MC 3D PSMs). This method
relies only on the information extracted from the motion-corrupted SA stack:
2D SA PSMs and a 3D SA PSM, which is used as target (see Fig. 2). While the
models presented so far are trained using 2D patches x and labels y, the 3D SA
PSM one is trained using 3D patches encompassing 5 slices in the z direction.
Training is performed on a set of high-resolution A3D images (inherently motion-
free) with accompanying 3D segmentations, setting the patch thickness equal to
that of 5 SA slices combined. This forces the model to learn representations
of motion-free stacks. At testing, the model is applied to the SA stack (after
an up-sampling step in the z direction to mimic the resolution of A3D images),
generating a virtually motion-free 3D PSM which are used as a target for slice-by-
slice in-plane registration (by translation only) of the 2D PSMs. The estimated
translations are applied to the SA slices, thus performing the correction.

3 Experiments and Results

Image Acquisition. Two distinct CMR image datasets (obtained with different
scanners, cardiac array coils and acquisition parameters) were used to test the
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proposed approach. The first dataset consists of 350 full CMR scans (including
also A3D images) of healthy subjects, while the second one consists of 500 scans
from the UK Biobank1. Only end-diastolic frames were considered.

Fig. 3. Results obtained for two different subjects, one per experiment. The proposed
techniques are underlined.

Performance Evaluation. Both datasets were annotated (either manually or
automatically with subsequent manual corrections) to provide LV cavity seg-
mentations for SA stacks, LA and A3D images as well as landmarks positions
for the LA images alone. Two experiments were devised. For experiment A,
24 scans from the first dataset were extracted based on presence of visually-
detected inter-slice motion and used as testing, while training was performed
on the remaining scans of the same dataset. For this experiment, the proposed
approach (with its two methods) was tested against an intensity-based tech-
nique (MC LA Int.) which iteratively registers SA slices to LA images (using
normalized mutual information as similarity metric), essentially as in [2]. For
experiment B, testing was performed on the same 24 scans of experiment A,
but training was performed on the whole second dataset. In this case, the pro-
posed approach (using only MC LA PSMs) was tested against a technique (MC
LA SEGs) which iteratively registers SA “hard” segmentations to LA segmen-
tations generated with FCNs (trained on images randomly extracted from the
same database), essentially as in [3]. To compare the accuracy of the imple-
mented techniques, in both experiments the corrective translations estimated
for each slice were applied to the provided SA segmentations. Then, the seg-
mentation of the A3D images, considered as reference, were rigidly registered to
the initial SA segmentation stack as well as to the those produced by each tech-
nique. Slice-by-slice in-plane registration was performed between reference and
initial segmentation stack to identify motion corrupted slices, and those with

1 http://www.ukbiobank.ac.uk/.

http://www.ukbiobank.ac.uk/
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more than 3 mm of misalignment were selected, for a total of 74. The evaluation
of the accuracy of the implemented techniques was performed on these slices
computing mean absolute distances (MAD), Hausdorff distances (HD) and Dice
coefficients (DSC) between the LV cavity reference contours and before or after
motion correction. The average slice-by-slice relative improvements for each of
these metrics were also computed, as well as the percentage of improved val-
ues (where 100% would ideally mean that all of the corrupted slices improved
their alignment). Of note, in experiment B, the testing set underwent histogram
normalisation to match the intensity distributions of the training set.
Implementation Details. For training, standard data augmentation was
implemented (random rescaling following a normal distribution with mean 1
and std 0.1, random rotation following a normal distribution with mean 0° and
std 30°). Image patch size was 48 × 48 px for LA models and 32× 32 px for SA
ones, segmentation label size 16 × 16 px, number of samples 4·106, number of
trees 8. Finally, the threshold Tm was set to 0.4 (on a scale from 0 to 1).

Table 1. Error metrics for experiment A (top) and experiment B (bottom). The pro-
posed techniques are underlined.

Motion correction MAD HD DSC Ratio of

Mean Mean Mean Mean Mean Mean improved

(mm) Impr. (mm) Impr. (a.u.) Impr. slices

Experiment A

None 3.1 6.9 0.83

MC LA Int. 2.7 14% 6.2 12% 0.85 2% 77%

MC 3D PSMs 2.6 19% 6.0 15% 0.86 2% 80%

MC LA PSMs 1.9 38% 4.9 29% 0.89 7% 92%

Experiment B

MC LA SEGs 2.3 23% 5.7 16% 0.88 7% 88%

MC LA PSMs 2.1 33% 5.2 26% 0.89 6% 91%

Results. Approximate time to perform motion correction of one SA stack on a
6-core CPU is 25 s for MC 3D PSMs and 36 s for MC LA PSMs. The results for
both experiment A and B are reported in Table 1 and displayed for two cases
in Fig. 3. Experiment A assesses the accuracy of the proposed approach in the
scenario of training and testing performed in the same dataset. The results show
that the intensity-based method performs worse than the others, and that MC
3D PSMs obtains lower errors even without using LA images. MC LA PSMs is
clearly the best method within this batch and is able to improve most (92%)
of the motion-corrupted slices. The fact that this method outperforms MC 3D
PSMs was expected: while MC 3D PSMs can produce a smoothly aligned stack,
more robustly than an intensity-based approach, it does not have any strong
target for the realignment and relies only on the implicit model for the LV shape
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learned from the training set. Experiment B evaluates the accuracy of MC LA
PSMs against a state-of-the-art approach like MC LA SEGs in a realistic scenario
where motion correction has to be performed on a dataset completely different
from the one used for training. Remarkably, MC LA PSMs produces results very
similar to the ones obtained when trained on the same dataset. As expected
given the similitudes between the two techniques, MC LA SEGs and MC LA
PSMs perform similarly (no statistically significant differences were highlighted
using a paired t-test). However, MC LA PSMs produces better mean results
due to a higher robustness in the basal slices (see Fig. 3, right side): in fact, hard
segmentation techniques have no safety mechanism to refrain from aligning slices
in the basal region (usually beyond the actual basal slice) for which the FCN
has produced spurious segmentations. On the contrary, the proposed approach
has two: the check on the peak probability of the PSM and the comparison with
the identified landmarks. As a result, the obtained motion correction tends to
be more robust to this effect (see again Fig. 3, right side).

4 Conclusion

A comprehensive approach for fully-automated inter-slice motion correction for
SA stacks has been presented. This approach relies on the generation of proba-
bilistic segmentation maps of the LV cavity to drive slice-by-slice in-plane reg-
istration. It is able to handle cases in which no LA images are provided with a
higher accuracy than common intensity-based methods that exploit them. When
LA images are instead available, the proposed approach achieves results on par
with methods based on hard segmentations while producing fewer outliers thanks
to the simultaneous identification of landmarks to constrain the correction.

Acknowledgments. This research has been conducted using the UK Biobank
Resource under Application Number 18545. The first author benefited from a Marie
Sklodowska-Curie Fellowship.

References

1. Zhuang, X., et al.: A framework combining multi-sequence MRI for fully automated
quantitative analysis of cardiac global and regional functions. In: Metaxas, D.N.,
Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 367–374. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21028-0 47
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