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Abstract. Image reconstruction from downsampled and corrupted mea-
surements, such as fast MRI and low dose CT, is mathematically ill-posed
inverse problem. In this work, we propose a general and easy-to-use
reconstruction method based on deep learning techniques. In order to
address the intractable inversion of general inverse problems, we propose
to train a network to refine intermediate images from classical recon-
struction procedure to the ground truth, i.e. the intermediate images
that satisfy the data consistence will be fed into some chosen denois-
ing networks or generative networks for denoising and removing arti-
fact in each iterative stage. The proposed approach involves only tech-
niques of conventional image reconstruction and usual image representa-
tion/denoising deep network learning, without a specifically designed and
complicated network structures for a certain physical forward operator.
Extensive experiments on MRI reconstruction applied with both stack
auto-encoder networks and generative adversarial nets demonstrate the
efficiency and accuracy of the proposed method compared with other
image reconstruction algorithms.
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1 Introduction

Image reconstruction problems arisen in medical imaging area such as fast MRI
and low dose CT are mathematically ill-posed inverse problems. We often con-
sider a linear imaging system with a forward operator A, for example partial 2D
Fourier transform for MRI and X-ray transform for CT. The measurement y is
given as y = Ax for x being the underlying image in the perfect noise free case.
The linear operator A is ill-posed for most applications; therefore some statisti-
cal priors are necessary to make these problems invertible. Sparsity priors such
as total variation (TV) [1] and wavelet tight frame [2] have been among those
popular regularization and studied extensively in the literature. 5 In practice,
the measurements are often corrupted by noise, i.e.

y = Ax + ε (1)
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if we assume it is i.i.d additive Gaussian noise. Derived by a maximum-likelihood
estimator of the physical process and sparsity prior distribution of the original
image, it is common to solve the following unconstrained model

min
x

1
2
‖Ax − y‖22 + μ‖Dx‖1, (2)

where D is a sparsity transform, for example, the mentioned spatial gradient
operator ∇ (total variation) and a tight frame transform W.

However, some side effects will also be involved by sparsity regularization
due to the predefined sparsity transform, for example, the staircasing effects are
introduced by TV. Deep networks have been successfully applied to many image
restoration tasks such as image denoising, inpainting, super resolution [3–5]. It is
shown in these work that those delicately designed deep networks achieved state-
of-the-art performance for these image processing problems. However, despite
their superior performance, it is still challenging to adapt the network for med-
ical image reconstruction problems as the networks are specifically designed for
those particular forward operators. Most of the emerged deep learning based
medical image reconstruction are based on the sparsity optimization algorithms
such as primal dual methods and Alternating Direction of Multiplier methods
(ADMM). For example, ADMM-net [6] and the learned variational network in
[7] aim to mimic the optimization algorithms for solving the sparse regulariza-
tion model (2) and build a network to learn the sparsity transform D. In [6,8,9],
analytic solutions are obtained for the inversion layers and a proximal operator
is learned for the denoising/anti-artifact layers. In the work [10,11], the authors
carefully designed a MRI reconstruction network to enhance data consistence.
These networks achieve state-of-the-art reconstruction results and at the same
time are usually more complicated compared to common neural networks, espe-
cially for derivative computing.

Because of the intractability of inversion of an ill-posed operator with partial
and corrupted measurements, we do not intend to learn an end-to-end inversion
mapping from the measurements to the reconstructed image as previous work.
Inspired by regularization based image reconstruction methods, we propose to
split the task of inversion of a known forward operator from learning an image
representation network. In order to feed the inputs into networks implicitly, we
establish a data consistence constrained network loss function and then apply
ADMM to split the tasks of solving the inversion and learning a network. The
problem is solved through simple iterations of existing techniques of conventional
inversion and usual image representation/denoising deep network learning. We
note that our method is different from ADMM-net, as ADMM-net considered the
solution of the sparsity optimization algorithms ADMM as the network output
and the sparsity transform D is considered as network parameters to be learned.
Our method does not intend to design a new network structure but integrate
existing ones in the ADMM algorithm to solve the proposed model. The prior
of to-be-reconstructed images is obtained by the learned network, which can
be easily used for the inference process. Finally, data consistence is maintained
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through iteration for the reconstruction, which is usually not the case for most
of learning based reconstruction methods.

2 Our Approach

The Stacked Auto-Encoder (SAE) deep network has shown to be a useful image
representation method for denoising [12], where a greedy layerwise approach
is proposed for pretraining. Stacked Convolutional Auto-Encoder (SCAE) [13]
was further proposed to preserve frequently repeated local image features. And
some improvement has been achieved by the Stacked Non-Local Auto-Encoder
(SNLAE) in [14] by using a nonlocal collaborative stabilization. In recent years,
more and more networks emerge for image restoration problems. For example,
it has been demonstrated that generative adversarial network (GAN) model
is powerful for medical or natural image restoration problems such as super-
resolution [4] and deburring [15].

In the following, we propose our image reconstruction learning model based
on a denoising network or GAN model. We denote the input dataset for a network
x = {xk}m

k=1 with the corresponding ground truth x̃ = {x̃k}m
k=1 where m is the

number of samples. In image reconstruction inverse problems, we denote the
corresponding measurements y = {yk}m

k=1 for yk = Axk where A is a known
forward operator. Here we use the boldface to denote the vectors of all the input
and output images in the training procedure and we use the regular characters
for their counterparts for the inference.

The learning procedure of a denoising network is designed to minimize a cost
function LH(x, θ), for example the quadratic function

min
θ

LH(x, θ) := ‖f(x, θ) − x̃‖22 (3)

where f(x, θ) is the output and θ is the set of network parameters. For GAN
model, the following min-max problem is considered

max
θd

min
θg

LG(x, θg, θd) =
1
m

m∑

i=1

[log(D(x̃i, θd))]+
1
m

m∑

i=1

[log(1−D(G(xi, θg), θd))]

(4)
where θg and θd are the parameter sets for the generative and discriminative
networks respectively, and G(·, θg) and D(·, θd) are the outputs of the two net-
works.

Let

J(x) = η(
m∑

i=1

‖Axi − yi‖22 + μ‖Dxi‖1) (5)

be the conventional data consistency term with sparse regularization. The for-
mulation can be easily generalized for other data fidelity derived from max-
likelihood of a posteriori estimation, and with other regularization term in J(x).
The regularization parameter μ can be very small or even zero.
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Being motivated by the fact that many powerful networks are available for
removing noise and artifact, we now attempt to propose to integrate deep learn-
ing network in the image reconstruction. Our basic idea is to use the variable
x which meets the data consistence implicitly to fed into the to-be-learned net-
works, by solving the following problem with a deep learning regularization

min
x,θ

LH(x, θ) + J(x), (6)

and
max

θd

min
θg,x

LG(x, θg, θd) + J(x) (7)

for LH and LG being the cost function for a denoising network and GAN model
respectively.

The above two models can be solved by adapting ADMM algorithm [16].
Taking (6) as an example, we reformulate it as

min
x,θ,z

LH(x, θ) + J(z)

s.t. x = z.
(8)

The augmented Lagrangian for the problem (8) is given as

Lρ(x, θ,z,p) = LH(x, θ) + J(z) + pT (x − z) +
ρ

2
‖x − z‖22 (9)

for a parameter ρ > 0.
The idea of the ADMM algorithm for solving the optimization problem (8) is

to alternatingly update the primal variables x, θ,z by minimizing the augmented
Lagrangian function (9) and update the dual variable p with a dual ascent step,
which leads to the following scheme

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zk+1 = arg min
z

J(z) + ρ
2‖xk − z + bk‖22

θk+1 = arg min
θ

LH(xk, θ)

xk+1 = arg min
x

LH(x, θk+1) + ρ
2‖x − zk+1 + bk‖22

bk+1 = bk + (xk+1 − zk+1)

(10)

for pk = ρbk. The variables x0 and z0 are initialized by

x0 = z0 = arg min
z

J(z). (11)

For the first subproblem in (10), we can solve this conventional reconstruction
problem with a classical reconstruction method, such as ADMM again if there is
a sparse regularization term present in J ; For the second subproblem in (10), it
is a typical loss function minimization for a deep learning network with the input
xk, and a stochastic gradient descent method built in the neural network tools
can be applied; For the third subproblem in (10), we can also use a stochastic
gradient descent method.
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The similar alternating scheme as (10) can be obtained for solving the GAN
training model (7) by replacing the second step in (10) by

(θk+1
g , θk+1

d ) = arg max
θd

min
θg

LG(xk, θg, θd). (12)

Here we need to alternatingly apply gradient descent for updating θk+1
g and

gradient ascent for updating θk+1
d as the general GAN methods do.

After we obtain the network parameter set θ∗, the learned network is ready
to be used for mapping a given input image x̂ to an estimated ground truth
image x by x = f(x̂, θ∗). More precisely, given a measurement y, we obtain the
reconstructed image x through the following scheme

⎧
⎪⎪⎨

⎪⎪⎩

zk+1 = arg min
z

J(z) + ρ
2‖xk − z + bk‖22

x̂k+1 = f(xk, θ∗)
xk+1 = 1

1+ρ (x̂k+1 + ρ(zk+1 − bk))
bk+1 = bk + (x̂k+1 − zk+1).

(13)

The initialization of x0 and z0 are performed similarly as (11). For the GAN
based reconstruction model, we can use the similar scheme to (13) by replacing
f(xk+1, θ∗) with G(xk+1, θ∗

g) in the second step to obtain the reconstructed
image x from a measurement.

3 Experiments

In this section, we perform the experiments on MRI reconstruction from down-
sampled measurements. The MRI data are generated by partial Fourier trans-
form with Gaussian noise corruption, i.e. y = KF(x + l ∗ (ξ1 + ξ2 ∗ i)) where
l is the noise level, ξ1, ξ2 obey i.i.d normal distribution, x is the ground truth
image, and K is the downsample operator. In our experiments, the MRI image
dataset is from ADNI (Alzheimer’s Disease Neuroimaging Initiative) of which
300 slices of size 192 × 160 are used for training and 21 slices are used for infer-
ring, and three different downsampling patterns with three downsamping rates
are used for simulating the measurements. To speed up the training process and
alleviate the ill-conditionness when the sampling rate is severely low, we use TV
term in the reconstruction functional J(x) (5), but its weight μ is decreasing by
outer loops of our method. As μ gets smaller and smaller, the contribution of
TV is eventually much smaller than what is used for sparsity regularized recon-
struction. In order to demonstrate the flexibility of our approach, we implement
three kinds of networks for MRI reconstruction, i.e. SCAE [13], SNLAE [14]
and GAN [5]. The basic setup and training/test time on a PC with an Intel i7
and a Nvidia GPU GTX1060 for the three networks SCAE, SNLAE and GAN
are listed in Table 1. To demonstrate the convergence of the proposed method,
the intermediate training results and inferring results by SCAE of one slice are
shown in Fig. 1, in which we can see that the images trend to be of good quality
and higher PSNR.
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Table 1. Network setup and computation time

Parameters SCAE/GAN Gen. SNLAE GAN Discri.

Dataset size (300, 192, 160) (300, 192, 160) (300, 192, 160)

Number of layers 6 6 8

Filter size in

hidden layers

[3, 3, 3, 3, 3, 3] – [3, 3, 3, 3, 3, 1, 1]

Stride in hidden

layers

[1, 1, 1, 1, 1, 1] – [2, 2, 2, 2, 2, 1, 1]

Number of

neurons/filters

in hidden layers

[25, 26, 27, 26, 25] [29, 210, 211, 210, 29] [23, 26, 26, 26, 26, 26, 26]

Outer loops 5 5 5

Train time(h) 11 16 36

Test time(sec) 3.2/3.3 4.1 –

(a) (b)

Fig. 1. Intermediate results [f(x0, θ0), f(x1, θ1), · · · , f(x5, θ5)] for MRI reconstruction
with 25% radial downsampling by SCAE. (a) training step; (b) inferring step

In Fig. 2, we show the comparison of our methods with the zero-filling method
(ZF) [17], TV regularization based reconstruction [18], and ADMM-net [6] for
the case with 1D random downsampling pattern and 25% downsampling rate
(the results for the other sampling patterns and rates are provided in the Sup-
plementary file). For the three downsampling patterns, we observe that in the
case of noise-free, the reconstructed images by our proposed methods including
SCAE, SNLAE and GAN, and by ADMM-net have better spatial resolution. In
the case of noise level 10% and with measurements of very low sampling rate, our
method with the four networks still achieve good performance. Specially, for the
case with 1D random downsampling pattern, we can find our methods have alle-
viate both noise and artifact. Visually, our methods generally achieved cleaner
images compared to ADMM-net for noisy data. To assess reconstruction image
quality quantitatively, we further show the results of PSNR and SSIM in Table 2.
All the best PSNR are scattered at the methods with learned regularization.
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ZF TV ADMM-net SCAE SNLAE GAN

0%

10%

Fig. 2. MRI reconstruction results. Sampling pattern and rate: 1D random with 25%;
The first row: noise free; The second row: 10% noise.

Table 2. MRI reconstruction quality (PSNR/SSIM)

Method Noise Rate ZF TV ADMM-

net

SCAE SNLAE GAN

Radial 0% 1/5 24.36/0.47 30.73/0.86 32.31/0.92 32.00/0.92 30.47/0.83 30.13/0.84

1/4 25.45/0.51 32.32/0.90 33.67/0.93 33.94/0.94 32.53/0.88 32.26/0.90

1/3 27.25/0.56 34.60/0.94 35.27/0.94 36.37/0.96 35.15/0.92 34.49/0.94

10% 1/5 22.18/0.35 24.69/0.49 25.44/0.59 25.52/0.73 25.98/0.68 25.02/0.73

1/4 22.38/0.36 25.16/0.49 25.96/0.61 26.13/0.70 26.38/0.66 25.53/0.74

1/3 22.37/0.37 25.28/0.49 26.50/0.60 26.64/0.74 26.70/0.65 26.71/0.75

2D

random

0% 1/5 24.91/0.49 31.69/0.89 33.81/0.93 34.24/0.94 31.95/0.86 31.79/0.89

1/4 25.30/0.50 32.79/0.90 34.97/0.94 35.61/0.95 32.85/0.86 32.94/0.91

1/3 26.32/0.53 34.93/0.93 36.31/0.95 37.71/0.96 35.33/0.91 35.10/0.94

10% 1/5 22.37/0.37 24.97/0.51 25.42/0.61 25.90/0.73 25.97/0.67 25.78/0.75

1/4 22.38/0.36 24.92/0.49 25.84/0.60 26.06/0.74 26.15/0.67 26.31/0.75

1/3 22.37/0.37 24.91/0.47 26.14/0.56 26.38/0.72 26.41/0.62 26.48/0.76

1D

random

0% 1/5 22.78/0.61 25.22/0.75 28.53/0.85 28.79/0.87 28.73/0.86 27.21/0.81

1/4 23.06/0.62 25.77/0.76 28.99/0.87 29.37/0.88 29.06/0.86 27.47/0.82

1/3 23.86/0.65 27.34/0.81 32.18/0.91 31.25/0.91 30.98/0.89 30.09/0.86

10% 1/5 20.72/0.27 22.38/0.39 22.59/0.40 22.22/0.61 24.52/0.60 22.76/0.67

1/4 20.37/0.26 22.25/0.37 22.98/0.44 22.72/0.63 24.39/0.56 23.32/0.69

1/3 20.37/0.28 22.59/0.37 23.96/0.47 23.75/0.62 24.98/0.58 23.93/0.70

4 Conclusion

We developed a variational image reconstruction method which integrates image
representation network and classical image reconstruction method. The proposed
model exhibits flexibility of choosing classical reconstruction method and power-
ful deep representation network. The application on MRI image reconstruction
shows the effectiveness of the proposed method and it is also clear that the
proposed method can be easily extended to other applications.
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