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Abstract. With the adoption of powerful machine learning methods in
medical image analysis, it is becoming increasingly desirable to aggre-
gate data that is acquired across multiple sites. However, the underly-
ing assumption of many analysis techniques that corresponding tissues
have consistent intensities in all images is often violated in multi-centre
databases. We introduce a novel intensity normalisation scheme based
on density matching, wherein the histograms are modelled as Dirichlet
process Gaussian mixtures. The source mixture model is transformed
to minimise its L2 divergence towards a target model, then the voxel
intensities are transported through a mass-conserving flow to maintain
agreement with the moving density. In a multi-centre study with brain
MRI data, we show that the proposed technique produces excellent cor-
respondence between the matched densities and histograms. We further
demonstrate that our method makes tissue intensity statistics substan-
tially more compatible between images than a baseline affine transforma-
tion and is comparable to state-of-the-art while providing considerably
smoother transformations. Finally, we validate that nonlinear intensity
normalisation is a step toward effective imaging data harmonisation.

1 Introduction

Many medical image analysis methods rely on the hypothesis that corresponding
anatomical structures present similar intensity profiles. Unlike computed tomog-
raphy, magnetic resonance imaging does not produce scans in an absolute stan-
dard scale, in general. Even when using the same imaging protocols, there can
be significant variation between different scanners. Acquisition parameters have
a complex effect on the luminance of the acquired images, therefore a simple lin-
ear rescaling of intensities is usually insufficient for effective data harmonisation
[5]. Therefore, a crucial factor for enabling the construction of large-scale image
databases from multiple sites is accurate nonlinear intensity normalisation.

A number of different approaches have been introduced for this task (cf. [1]),
the most widely-adopted of which is that of Nyúl et al. [7]. The authors proposed
to normalise intensities by matching a set of histogram quantiles, using these as
landmarks for a piecewise linear transformation. Despite its apparent simplicity,
it has proven very effective in clinical applications [9].
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Fig. 1. Comparison of two MRI scans, before and after the proposed NDFlow nor-
malisation. Right: histograms (shaded) and fitted mixture models (dotted: likelihood,
solid: mixture components).

Our proposed method, nonparametric density flows (NDFlow), is perhaps
conceptually closest to [5], which involves matching Gaussian mixture models
(GMMs) fitted to a pair of image histograms. The author used a finite mixture
to represent a pre-defined set of five tissues classes, whereas we propose to use
nonparametric mixtures, focusing on accurately modelling the density rather
than discriminating tissue types, and sidestepping the problem of pre-selecting
the number of components. A further difference to our work is that, instead of
polynomially interpolating between the means of corresponding components, we
build a smooth transformation model based on density flows.

2 Method

We begin by justifying and describing the density model used to represent the
intensity distributions to be matched. We then introduce the chosen objective
function with its gradients for optimisation. Finally, we present our flow-based
transformation model, which deforms the data so it conforms to the matched
density model. Note that we focus here on single-modality intensity normalisa-
tion, although the entire formulation below extends naturally to the multivariate
case.

2.1 Intensity Model

In order to be able to match the intensity distributions of a pair of images, a
suitable probability density model is required. Typically, finite mixture models
are considered for this task [5,8]. However, a well-known limitation of these is
the requirement to specify a priori a fixed number of components, which may in
addition call for an iterative model selection loop (e.g. [8]).

On the opposite end of the spectrum, another approach is to use kernel den-
sity estimation, which is widespread for shape registration (e.g. [4,6]). However,
this formulation would result in an unwieldy optimisation problem, involving
thousands or millions of parameters and all pairwise interactions. Furthermore,
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the derived transformation would likely not be satisfactorily smooth without
additional regularisation.

To overcome both issues we propose to use Dirichlet process Gaussian mix-
ture models (DPGMMs) [3]. Instead of specifying a fixed number of components,
they rely on a vague concentration parameter, which regulates the expected
amount of clustering fragmentation and enables them to adapt their complexity
to the data at hand. By allowing an unbounded number of components and set-
ting a versatile prior on the mixture proportions, they appear as a parsimonious
middle ground for flexibility and tractability.

We fit the DPGMMs to each image’s intensities using variational inference [2].
More specifically, we implemented an efficient weighted variant to fit a mixture
directly to each 1D histogram.

2.2 Density Matching

The first step is to perform a coarse affine alignment by matching the mov-
ing density’s first and second moments to the target’s, accounting for arbitrary
translation and rescaling of the values. This same affine transformation is then
also applied to the data before the nonlinear warping takes place.

We quantify the disagreement between two probability density functions q
and p on a probability space X by means of the L2 divergence:

DL2 [q, p] = 1
2‖q − p‖2 = 1

2‖q‖2 + 1
2‖p‖2 − 〈q, p〉 , (1)

where 〈q, p〉 =
∫

q(x) p(x) dx is the L2 inner product and ‖q‖ =
√〈q, q〉 is its

induced norm. Aside from being symmetric, this quantity is positive and reaches
zero iff q

a.e.= p. Crucially, unlike the usual Kullback–Leibler divergence, it is
expressible in closed form for Gaussian mixture densities.

Let q =
∑

k πkqk and p =
∑

m τmpm denote two Gaussian mixtures, with
components qk(x) = N (x | μk, λ

−1
k ) and pm(x) = N (x | νm, ω−1

m ). Equation (1)
has tractable gradients w.r.t. the parameters of q, which we use to optimise its
components’ means {μk}k and precisions {λk}k (cf. extended version).1

We have found, in practice, that it is largely unnecessary to adapt the mixing
proportions, {πk}k, to get an excellent agreement between mixture densities. In
fact, changing the mixture weights would require transferring samples between
mixture components. Although surely possible, we point out that in the context
of histogram matching this would imply altering their semantic value (e.g. con-
sider a mixture of two well-separated components representing different tissue
types).

2.3 Warping

After matching one GMM to another, we also need a way to transform the data
modelled by that GMM so it matches the target data. To this end, we draw

1 Available at: http://arxiv.org/abs/1806.02613.

http://arxiv.org/abs/1806.02613
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inspiration from fluid mechanics and define the warping transformation, f , as
the trajectories of particles under the effect of a velocity field u over time, taking
the probability density q for the mechanical mass density. The key property that
such flow must satisfy is conservation of mass: ∂tq + ∂x(qu) = 0, where t �→ q(t)

is specified directly from the density matching.
Let us first consider the case of warping a single mixture component. A ran-

dom variable x ∼ N (μk, λ
−1
k ) can be expressed via a diffeomorphic reparametri-

sation of a standard Gaussian, with x = ψk(ε) = μk + ε/
√

λk and ε ∼ N (0, 1).
Assuming its mean and precision are changing with rates μ̇k and λ̇k, respec-
tively, we can introduce a velocity field uk = ψ̇k ◦ ψ−1

k for its samples so that
they agree with this evolving density. The instantaneous velocity at ‘time’ t is
thus given by

u
(t)
k (x) = μ̇

(t)
k − λ̇

(t)
k

2λ
(t)
k

(
x − μ

(t)
k

)
. (2)

In the case of a mixture with constant weights {πk}k, we can construct a
smooth, mass-conserving global velocity field u as

u(t)(x) =
∑

k

πkq
(t)
k (x)

q(t)(x)
u
(t)
k (x), (3)

which is simply a point-wise convex combination of each component’s velocity
field, uk, weighted by the corresponding posterior assignment probabilities.

Finally, the warping transformation f (t) is given by the solution to the fol-
lowing ordinary differential equation (ODE):

∂tf
(t)(x) = u(t)(f (t)(x)) , f (0)(x) = x. (4)

With f defined as above, we can prove that q(t) is indeed the density of samples
from q(0) transformed through f (t), i.e. q(0) = |∂xf

(t)| q(t) ◦ f (t) (cf. extended
version). Crucially, the true solution to Eq. (4) is diffeomorphic by construction,
and can be numerically approximated (and inverted) with arbitrary precision. In
particular, we employ the classic fourth-order Runge–Kutta ODE solver (RK4).

Now assume we obtain optimal parameter values {μ∗
k}k and {λ∗

k}k after
matching q to p. We can then warp the data using the above app-
roach, for example linearly interpolating the intermediate parameter values,
μ
(t)
k = tμ∗

k + (1 − t)μ(0)
k and λ

(t)
k = tλ∗

k + (1 − t)λ(0)
k , hence setting the rates in

Eq. (2) to constant values, μ̇k = μ∗
k − μ

(0)
k and λ̇k = λ∗

k − λ
(0)
k , and integrating

Eq. (4) for t ∈ [0, 1].

2.4 Practical Considerations

Since each medical image in a dataset can have millions of voxels, computing the
posteriors and flows for every voxel individually can be too expensive for batch
processing. To mitigate this issue, we can compute the end-to-end transformation
on a mesh in the range of interest, which is then interpolated for the intensities
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in the entire volume. In the reported experiments, we have used a uniformly-
spaced mesh of 200 points, which has proven accurate enough for normalisation
purposes.

Note that the transformation could also be computed on the histogram of
discrete intensity values and built into a look-up table. However, this would not
scale well to two or more dimensions for multi-modal intensity normalisation,
whereas a mesh would not need to be very fine nor require a regular grid layout.

3 Experiments

3.1 Dataset

Our experiments were run on 581 T1-weighted MRI scans from the IXI database,
collected from three imaging centres with different scanners.2 Each scan was
bias field-corrected using SPM123 with default settings and rigidly registered to
MNI space. SPM12 was further used to produce grey matter (GM), white mat-
ter (WM) and cerebrospinal fluid (CSF) tissue probability maps. We obtained
brain masks by adding the three probability maps and thresholding at 0.5. The
statistics reported below were weighted by the voxel-wise tissue probabilities to
account for partial-volume effects and segmentation ambiguities.

3.2 Setup

We firstly fitted the nonparametric mixture models to the full integer-value his-
tograms of the raw images (inside the brain masks), as described in Sect. 2.1.
We set the DP’s concentration parameter to 2 and used data-driven Normal–
Gamma priors for the components. As an ad-hoc post-processing step, we pruned
the leftover mixture components with weights smaller than 10−3. In the absence
of one global reference distribution, we affinely aligned these DPGMMs and the
corresponding data to zero mean and unit variance (cf. Fig. 2, middle).

Fig. 2. Population densities, colour-coded by imaging centre

After this rough alignment, global and centre-wise average densities were
computed. These were then considered as histograms to which we fitted global
and centre-wise reference DPGMMs.
2 http://brain-development.org/ixi-dataset/.
3 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/.

http://brain-development.org/ixi-dataset/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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For normalisation, we consider two scenarios. The first is to normalise each
centre’s reference distribution to the global target, then to apply this same trans-
formation to all subjects in that centre. In the other approach, each subject’s
image is individually normalised to the global target density. These scenarios
reflect different practical applications where the centre-wise normalisation aims
to preserve intra-centre variation, which might be desired. On the other hand,
the individual normalisation aims to make all scans as similar as possible.

We compare our technique to Nyúl et al.’s prevalent quantile-based, piecewise
linear histogram matching method [7], considered state-of-the-art for intensity
normalisation and referred here as Nyul. We acquired the default 11 landmarks
(histogram deciles and upper/lower percentiles) from the affine-aligned data for
all subjects, then normalised each subject to this set of average landmarks.

3.3 Results

Histogram Fitness. Fig. 3 illustrates the results of normalisation between the
pair of images in Fig. 1, which have a notable dissimilarity in the CSF region
of the histograms. We observe that both our NDFlow- and Nyul-transformed
histograms present substantially lower mean absolute and root mean squared
errors (MAE and RMSE) than the affine-aligned one, and our method performed
best by a small margin. This is confirmed in a number of trials with other images.

Fig. 3. Histograms and Q–Q plots of each of the methods against the target histogram.
The shading shows the discrepancy between the transformed (black) and target his-
togram (light red). In the rightmost plot, the landmarks are indicated by vertical lines
in the histogram and ticks in the Q–Q plot.

A noteworthy artefact of Nyul are abrupt jumps produced at the landmark
values (e.g. Fig. 3c), which appear because interval are uniformly compressed or
dilated by different factors, and may be detrimental to downstream histogram-
based tasks (e.g. mutual information registration). NDFlow causes no such
discontinuities due to the smoothness of the mass-conserving flows.
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Tissue Statistics. In Table 1 we report the WM, GM and CSF intensity statis-
tics for different normalisations. Firstly, we see that the centre-wise normalisa-
tion had a small but significant effect on the overall distribution statistics. More
importantly, the variances of the statistics after individual NDFlow and Nyul
transformations were typically similar, and both were almost always substan-
tially smaller than the variance after only affine alignment, with the exception
of CSF.

Table 1. Tissue statistics after normalisation (mean ± std. dev., N = 581)

Method 1st Quartile Median 3rd Quartile

WM Affine 0.900 ± 0.040 1.024 ± 0.045 1.126 ± 0.055

NDFlow: Centre 0.898 ± 0.040 1.020 ± 0.040 1.121 ± 0.043

NDFlow: Indiv. 0.890 ± 0.029 1.014 ± 0.018 1.120 ± 0.016

Nyul 0.897 ± 0.029 1.023 ± 0.015 1.126 ± 0.008

GM Affine −0.296 ± 0.142 0.025 ± 0.117 0.344 ± 0.080

NDFlow: Centre −0.297 ± 0.139 0.025 ± 0.114 0.344 ± 0.076

NDFlow: Indiv. −0.312 ± 0.094 0.027 ± 0.065 0.351 ± 0.058

Nyul −0.309 ± 0.106 0.027 ± 0.070 0.350 ± 0.064

CSF Affine −2.036 ± 0.145 −1.486 ± 0.140 −1.024 ± 0.156

NDFlow: Centre −2.035 ± 0.143 −1.480 ± 0.142 −1.018 ± 0.160

NDFlow: Indiv. −2.031 ± 0.136 −1.484 ± 0.170 −1.028 ± 0.191

Nyul −2.025 ± 0.111 −1.474 ± 0.178 −1.029 ± 0.207

Bold: p < .01, one-tailed Brown–Forsythe test for lower variance than ‘Affine’

It is known that the amount of intra-cranial fluid can vary substantially due
to factors such as age and some neurodegenerative conditions, and this reflects
on the distributions of intensities in brain MRI scans, which is evident in Fig. 2.
As a result, normalising all subjects to a ‘mean’ distribution fails to identify a
consistent reference range for CSF intensities.

A fundamental limitation of any histogram matching scheme is that it is
unclear how to proceed when the distributions are genuinely different. Intensity
distributions can be strongly affected by anatomical differences; for example, we
can observe large variations in the amounts of fluid and fat in brain or whole-
body scans, which may heavily skew the overall distributions (moderate example
in Fig. 3). The underlying assumption of these methods (including ours) is that
the distributions are similar enough up to an affine rescaling and a mild nonlinear
deformation of the values, thus handling histograms of truly different shapes
remains an open challenge. For images with different fields of view, it may be
beneficial to perform image registration before applying intensity normalisation.

Centre Classification. To evaluate the effectiveness of intensity normalisation
for data harmonisation, we conducted a centre discrimination experiment with
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random forest classifiers trained on the full images. We report the pooled test
results from two-fold cross validation (detailed results in extended version).

Relative to affine normalisation, centre-wise and individual NDFlow and
Nyul showed a slight drop in overall classification accuracy (94.1% vs. 92.7%,
93.6%, 92.9%, resp.). On the other hand, the uncertainty, as measured by the
entropy of the predictions, was significantly higher (paired t-test, all p < .01).
Nonlinear intensity normalisation therefore seems to successfully remove some
of the biasing factors which are discriminative of the origin of the images.

4 Conclusion

In this paper, we have introduced a novel method for MRI intensity normal-
isation, called nonparametric density flows (NDFlow). It is based on fitting
and matching Dirichlet process Gaussian mixture densities, by minimising their
L2 divergence, and on mass-conserving flows, which ensure that the empirical
intensity distribution agrees with the matched density model.

We demonstrated that our normalisation approach makes tissue intensity
statistics significantly more consistent across subjects than a simple affine align-
ment, and compares favourably to the state-of-the-art method of Nyúl et al.
[7]. We have additionally verified that NDFlow is able to accurately match
histograms without introducing spurious artefacts produced by the competing
method. Finally, we argued that both normalisation techniques can reduce some
discriminative scanner biases, in a step toward effective data harmonisation.

By employing nonparametric mixture models, we are able to represent arbi-
trary histogram shapes with any number of modes. In addition, our formulation
has the flexibility to match only part of the distributions, by freezing the param-
eters of some mixture components. This may be useful for ignoring lesion-related
modes (e.g. multiple sclerosis hyperintensities), if the corresponding components
can be identified (e.g., via anomaly detection). Evaluating this approach and its
robustness against lesion load is a compelling direction for further research.
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