
Neural Network Evolution Using
Expedited Genetic Algorithm for Medical

Image Denoising

Peng Liu, Yangjunyi Li, Mohammad D. El Basha, and Ruogu Fang(B)

J. Crayton Pruitt Family Department of Biomedical Engineering,
University of Florida, Gainesville, FL, USA

Ruogu.Fang@bme.ufl.edu

Abstract. Convolutional neural networks offer state-of-the-art perfor-
mance for medical image denoising. However, their architectures are
manually designed for different noise types. The realistic noise in medi-
cal images is usually mixed and complicated, and sometimes unknown,
leading to challenges in creating effective denoising neural networks.
In this paper, we present a Genetic Algorithm (GA)-based network
evolution approach to search for the fittest genes to optimize network
structures. We expedite the evolutionary process through an experience-
based greedy exploration strategy and transfer learning. The experimen-
tal results on computed tomography perfusion (CTP) images denoising
demonstrate the capability of the method to select the fittest genes for
building high-performance networks, named EvoNets, and our results
compare favorably with state-of-the-art methods.

Keywords: Medical image denoising · Genetic Algorithm
Convolutional neural networks · Evolution · Low-dose imaging

1 Introduction

Medical imaging techniques, such as Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), and X-rays are popular diagnostic tools. Neverthe-
less, these techniques are susceptible to noise. For example, CT perfusion images
are often associated with complicated mixed noise due to the photon starvation
artifacts. In recent decades, different methods have been widely investigated to
solve the problem, ranging from spatial filtering techniques, such as Wiener fil-
ters [7], to patch similarity methods, such as BM3D [1]. However, complicated
mixed noise in medical images still leads to the unsatisfactory performance of
these methods and remains a valuable research direction.

Convolutional Neural Networks (CNN) have shown superior performance
over traditional models on denoising tasks. A typical CNN is composed of several
stacked layers, including layer connections and hyperparameters (e.g., number
of layers, neurons in each layer, type of activation function). RED-Net [5] con-
sists of a chain of 30 convolutional layers and symmetric deconvolutional layers.
c© Springer Nature Switzerland AG 2018
A. F. Frangi et al. (Eds.): MICCAI 2018, LNCS 11070, pp. 12–20, 2018.
https://doi.org/10.1007/978-3-030-00928-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00928-1_2&domain=pdf


Neural Network Evolution Using Expedited Genetic Algorithm 13

Fig. 1. Overview of the proposed method composing of fitness evaluation and popula-
tion evolution. The CNN architecture is trained on medical images using a fitness score.
The individual networks labeled with the fitness scores are sent to individual selection.
The survived individuals are presented as parents for crossover and mutation.

Another state-of-the-art method, DnCNN [10], adopts concise stacked-layer con-
nections but achieves impressive performance via appropriate hyperparameters
(e.g., ReLU [6]) selection. Consequently, hyperparameters play a dominant role
in optimizing image denoising tasks.

Although these modern networks present promising image restoration per-
formance, they are all manually designed based on empirical knowledge. It is
expensive and slow to manually search for the optimal network structures with
exponential combinations of hyperparameters and layers connections. To address
this issue, it is critical to automatically construct promising CNN-based denois-
ers with concise layer connections and optimal hyperparameter combinations.
Moreover, an efficient algorithm is important to explore the optimal CNN struc-
tures within reasonable computational time.

In this work, we construct a CNN-based medical image denoiser, named
EvoNet, automatically. To more effectively navigate large search spaces, we for-
mulate an optimized genetic algorithm (GA). Basically, GA initializes candi-
date solutions (e.g., networks) as an initial generation, and then applies genetic
operations to evolve the solutions in each generation. As shown in Fig. 1, for
the population evolution process, we define three standard genetic operations:
selection, crossover, and mutation. A fitness function is formulated to help us
select best individuals (e.g., CNN) in each generation. Each of these solutions is



14 P. Liu et al.

evaluated by fitness scores through a denoising evaluation criteria. The contri-
butions of the paper are as follows:

• It is the first time to propose a GA-based method to construct CNN structures
for medical image denoising automatically. This evolution approach provides
the flexibility to optimize both CNN parameters and network structures.

• We optimize the standard genetic algorithm to speed up the evolutionary
progress. Specifically, we use an experience based greedy strategy on the ini-
tialization stage to enrich high-performance individuals in the first genera-
tion. In addition, we select an appropriate mutation rate to make a trade-off
between the diversity of the population (CNNs) and convergence of optimum
generation.

• We dynamically update hyperparameter sets to make the architectures
of the population (CNNs) transferable between datasets of different sizes.
Particularly, we split all possible hyperparameters into fine-genes and
complementary-genes for initialization and mutation respectively.

2 Methodology

Background. Genetic Algorithms (GAs) [2] are inspired by the natural biolog-
ical evolution. Typically, a GA is composed of a “population” P of N “individ-
uals”, and has operations including initialization, individual selection, parents
crossover, and children mutation (see Fig. 1). A sequence of operations is referred
as an evolutionary “generation”. The competition among individuals is simulated
by a fitness function that selects the fittest individuals over the weaker ones.

GA has been widely utilized as a heuristic search and optimization tech-
nique and also has been applied in machine learning approaches, and function
optimization. Recently, Xie et al. [8] applied GA to explore CNN architectures
automatically for image classification. These methods focus on exploring the
structural module blocks and connections among layers. However, the study of
an efficient way for building a concise CNN-based denoiser on medical image
automatically is still lacking.

A concise but also promising CNN-based denoiser relies on a specific learning
strategy (e.g., Residual learning) and one choice of hyperparameter combina-
tions (e.g., DnCNN). Therefore, in this work, we aim at building a simple but
effective CNN structure via focusing on exploring the effective combinations of
CNN hyperparameters instead of the structural blocks and layer connections.
One significant challenge of using GA is how to accelerate the evolutionary pro-
cess dynamically in a huge search space. To address this issue, we present an
Optimized Genetic Algorithm (Algorithm 1) with an experience based greedy
exploration strategy in the next section.

Gene Splitting. A “gene” is the basic functional unit in a biological body.
In an artificial neural network, genes represent hyperparameters, such as the
number of layers, the number of neurons, the activation function, and the type



Neural Network Evolution Using Expedited Genetic Algorithm 15

Algorithm 1. The Proposed Genetic Algorithm for Exploring CNNs
Input: one all-possible-gene set θ = θc ∪ θf , initial fine-gene set θf , initial

complementary-gene set θc, initial population size N , initial number of generation
G, percentage of selected individuals after each generation σ, number of children
of crossed over out O , mutation rate ε, termination condition E , small and large
training datasets D = {Ds, Dl}

1: for d = 1, 2, ..., length(D) do
2: for g = 1, 2, ..., G − 1 do
3: for i = 1, 2, ..., N do
4: if g = 1 then
5: Initialize a set of randomized individuals {P g

i }N
i=1 based on θf

6: end if
7: Return trained individuals

{
P g,t

i

}N

i=1
by Keras and Tensorflow

8: Return fitness scores F g
i = F (Pg,t

i ) to individuals
9: end for

10: Sort
{

P g,trained
i

}N

i=1
by F g

i with descending order

11: � =
{

P g,trained,sorted
i

}N∗σ

i=1
Select the top N ∗ σ best individuals

12: P g,new
i = P g,new

i + = ∅

13: while length(P g,new
i ) < N − length(�) do

14: Υmom, Υdad = uniformRandom(�) Select parents
15: {Ψo}O

o=1 = Genome(Υmom, Υdad) Have children with crossover genes
16: if ε > Random(0, 1) then Mutation with a rate μ
17: Ψselected = selectRandom({Ψo}O

o=1) Randomly select one child
18: θselected = selectRandom(θΨselected) Randomly select one gene
19: θc,selected = selectRandom(θc, Genotype(θselected))
20: {Ψm

o }O
o=1 = replace(Ψselected, θselected, θc,selected)

21: P g,new
i = P g,new

i + {Ψm
o }O

o=1

22: else
23: P g,new

i = P g,new
i + {Ψo}O

o=1

24: end if
25: P g,new

i = removeDuplicate(P g,new
i )

26: end while
27: P g,new

i = P g,new
i + �

28: if E = True then May say “the highest fitness score is not changing”
29: Terminate generation and go to output
30: end if
31: end for
32: θu

f = Update(θf , �) Replace fine-gene set with the genes in �
33: θu

c = θ − θf Update complementary-gene set
34: end for
Output: Select the best individuals (CNNs) from P g,new

i

of optimizers. To speed up the evolution process, let θ be the set of all possible
genes, and it is split into a fine-gene set θf and a complementary-gene set θc.
Fine-genes are the hyperparameters selected from those state-of-the-art CNN
structures in the literature (e.g., DnCNN) or previous GA generations. The rest



16 P. Liu et al.

genes in θ are the complementary genes. The first population is initialized based
on θf . The mutation process is solely built upon θc. An individual (CNN) is
composed of different genes, and N individuals form a population-P .

Our method emphasizes the fittest gene more than the survived individuals
(network structures). This strategy ensures the promising genes are passed down
to offspring, and the fittest individuals are more likely to be explored effectively
in early generations. Therefore, our approach can accelerate the evolution pro-
cess via optimizing gene search space dynamically. The overview and algorithm
details of the proposed method are shown in Fig. 1 and Algorithm 1 respectively.

Experience Based Greedy Exploration. We optimize GA with an experi-
ence based greedy exploration strategy, which determines how to update gene
sets and terminate evolution process. Experience represents CNN hyperparame-
ters from the last generation, our approach stores and transfers such experience
to next generation. In another word, we initialize the fine-gene sets with top-
performance CNNs evolved in the previous generations.

Transfer Learning. Another novel contribution of our approach is using a
transfer learning strategy [9] that allows the explored CNN architectures to be
transferable among training data of different sizes. For instance, we may use a
small dataset to quickly optimize the gene-set space first, and then explore CNNs
on a larger dataset by initializing a new population using the fine genes identified
from the small dataset. It further expedites the network evolution process.

Fitness Evaluation. The fitness function F (Pi) returns the restored image
quality measure as a fitness score to each individual Pi. Fitness score performs
the following functions: (1) evaluating individual fitness; (2) updating gene-sets;
(3) serving as a stopping rule. Hence, the fitness function is critical for designing
an effective GA-based method. Algorithm 1 presents the details of the proposed
GA for exploring the promising CNNs to handle with medical image denoising.

3 Experiments

Training and Testing Data. Our dataset is a collection of 10,775 cerebral
perfusion CT images, all of which are 512 × 512 gray-scale images. Training data
D consist of randomly selected 250 images from the perfusion CT dataset, all of
them are cropped uniformly to the size of 331 × 363. This pre-processing step
removes skull and background from raw CT images and improves feature learning
efficiency during training. Testing data are randomly selected 250 images with
no overlap with the training data, and they remain as 512 × 512 grayscale
images. Another 100 images with no overlap with the training/testing data are
selected as the validation set. We use Peak Signal-to-Noise Ratio (PSNR) as the
fitness function in approach.



Neural Network Evolution Using Expedited Genetic Algorithm 17

Transfer Learning. GA requires high computational resources due to the large
search space, which leads difficulties to evaluate performance on large datasets
directly. Our strategy is to explore promising CNN hyperparameter combinations
by training on a small subset Ds. In particular, 35 images from the training data
are randomly selected and segmented with patch size 50 × 50 at a stride of 20.
Therein, 8,576 image patches are generated for the initial evolution. We then
transfer hyperparameters observed from results on Ds to a large training set Dl.
With the same patch size and stride length, 100 images of Dl are segmented into
17,280 patches for further evolution.

Low-Dose Noise Simulation. Repeated scans at different radiation dose on
the same patient are not ethical due to increased unnecessary radiation expo-
sure. Therefore, in this paper, low-dose perfusion CT images are stimulated and
added to the regular dose perfusion CT images. Specifically, spatially correlated,
normally distributed noise is added to both training data and testing data. The
added noise has a standard deviation of σ = 17, 22, 32, which corresponds to the
tube current-time product of 30, 20, 10 mAs. The regular dose level is 190 mAs.

Experimental Setup. All possible genes θ are selected from CNN hyperpa-
rameters with promising performance reported in the literature [5,10]. In this
paper, we consider a constrained case with θ consisting of four sub-genotypes:
number of layers = (1, 2, 3, 4, 5, 6, 7), number of neurons in each layer = (16, 32,
64, 96, 128, 256), activation = (‘ReLU’, ‘Tanh’, ‘SELU’, ‘ELU’, ‘Sigmoid’), and
optimizers = (‘rmsprop’, ‘sgd’, ‘adam’,‘adamax’, ‘adadelta’, ‘adagrad’). During
initialization, we set the initial fine-gene set θf from set θ as number of layers =
(5, 6), number of neurons in each layer = (32, 48), activation = (‘ReLU’, ‘ELU’,
‘Sigmoid’), and optimizers = (‘sgd’,‘adam’). We create an initial population size
N = 20 individuals and perform genetic operations for 10 rounds (generation).
For each generation, we set mutation possibility rate ε = 0.1. Crossover hap-
pens between any two random parents networks. After each crossover and muta-

Fig. 2. (a) The performance of best individual with respect to mutation rate ε =
0.05, 0.1, 0.2. (b) The average performance over top 5 individuals with respect to the
initialization process with a fine-gene set θf and whole-gene set θ. (c) The average
performance overall individuals with respect to the generation number. All training
are processed on large dataset Dl



18 P. Liu et al.

tion, we check the whole population and eliminate duplicate individuals (see
Algorithm 1). Other hyperparameters (e.g., learning rate) follow Tensorflow
default settings. Residual learning [4] is adopted to accelerate training process.
All GA progresses are processed on Tensorflow platform with GEFORCE GTX
TITAN GPUs.

Fig. 3. The activation gene appearance changing during evolutionary progress on the
small dataset Ds (a), and the large dataset Dl (b) with transferred initialization set. In
each generation, 5 top performed individuals are selected to summarize changes. Top
5 Candidates bar refers to the final optimizer gene distribution after one evolutionary
progress.

Parameters Selection. We evaluate the performance of different mutation
rate as shown in Fig. 2(a). When the mutation rate is too high, it increases the
searching speed in the search space but may not find optimal individuals in each
generation. On the other hand, when the mutation rate is too low, it can lead
individuals to converge rapidly to local optimum instead of the global optimum.
From Fig. 2(a), ε = 0.1 gives the optimal performance. We also evaluate differ-
ent initialization strategies as shown in Fig. 2(b). Fine-gene initialization with
selected genes can reach the same performance as the whole gene initialization
strategy after 8 generations. While we set fine-genes as greedy initialization set, it
helps early generations find high-performance individuals. However, after certain
generations, more mutation genes are introduced due to the duplicate individual
elimination, which increases population diversity but reduces the average perfor-
mance. This strategy helps to stop early at an optimal generation and improves
search efficiency. This is demonstrated in Fig. 2(c). We use 10 generations as
shown in Fig. 2(c).

Gene Evolution. We track the evolution of genes over generations and illus-
trate the optimizer genes in Fig. 3. We show the top 5 individuals in each gen-
eration trained on a small training set and after transferring to a large training
set. When training on a small set (Fig. 3(a)), the low-performance genes are
eliminated over the generations, such as sgd and adagrad. At the same time,



Neural Network Evolution Using Expedited Genetic Algorithm 19

the high-performance genes are introduced from mutation, such as adadelta.
After being transferred to a large training set (Fig. 3(b)), the initialization set is
transferred from (a), where good “genes” such as adam, adadelta, and adamax
are preserved. Through the evolution, top performance genes such as adamax
and adadelta dominate the optimizer genes. This tracking process demonstrates
that our greedy initialization strategy helps to search for high-performance genes
efficiently. More importantly, it shows that the learned CNN hyperparameters
(genes) and structures are transferable from small datasets to large datasets.

Fig. 4. Visual Results of perfusion CT dataset with noise σ = 22. A region of Interest
(ROI) is selected (red region) and scaled up for better visual comparison.

Comparison with State-of-the-Art Methods. Both quantitative and qual-
itative comparisons are provided. We compared with state-of-the-art methods
including BM3D and DnCNN. DnCNN has been reported to work on medical
images [3]. We obtained the EvoNet-5 (5 layers, 64 neurons each layer, adadelta,
ReLu) from Ds, and EvoNet-17 (17 layers, 64 neurons each layer, adadelta, ReLu)
from Dl.

In Table 1, we present the summary of quantitative results. The deeper
EvoNet-17 outperforms other state-of-the-art methods with PSNR on the test-
ing dataset. The shallow EvoNet-5 achieves comparable performance to DnCNN;
however, it is deep (20 layers) while the EvoNet-5 is a compact structure with

Table 1. Average PSNR, SSIM, and computation time of algorithms: BM3D, DnCNN,
EvoNet-5, and EvoNet-17 at different noise levels σ = 17, 22, 32. Best performance is
highlighted in bold.

σ BM3D [1] DnCNN [10] EvoNet-5 EvoNet-17

PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

17 29.07 0.4515 36.64 0.9158 36.30 0.9062 36.65 0.9074

22 26.98 0.3578 35.87 0.8863 35.66 0.8914 35.92 0.8988

32 23.95 0.2385 35.03 0.8671 34.35 0.8578 35.04 0.8846



20 P. Liu et al.

stacked convolutional layers without regularization technique. Deeper (6, 7 lay-
ers) and larger (128, 256 neurons) networks are eliminated due to overfitting on
small data. Figure 4 shows visual results. Our method perfectly restores physi-
ological structures, circuit contour and texture of the cerebral cortex and gains
high PSNR values. It is matching with quantitative results.

4 Conclusions

In this work, we propose an optimized GA-based strategy to explore CNN struc-
ture for medical image denoising. We introduce an experience-based greedy
exploration strategy and transfer learning to accelerate GA evolution. We evalu-
ate EvoNets on a perfusion CT dataset and demonstrate promising performance.
In the current work, we only consider a constrained case. In future work, the
proposed method can be extended to explore more flexible CNN structures for
challenging tasks, such as tumor detection.

Acknowledgment. This work is partially supported by NSF IIS-1564892.

References

1. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: BM3D image denoising with
shape-adaptive principal component analysis. In: SPARS 2009-Signal Processing
with Adaptive Sparse Structured Representations (2009)

2. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
3. Jifara, W., Jiang, F., Rho, S., Cheng, M., Liu, S.: Medical image denoising using

convolutional neural network: a residual learning approach. J. Supercomput. pp.
1–15 (2017)

4. Kiku, D., Monno, Y., Tanaka, M., Okutomi, M.: Residual interpolation for color
image demosaicking. In: 2013 IEEE International Conference on Image Processing,
pp. 2304–2308. IEEE (2013)

5. Mao, X.J., Shen, C., Yang, Y.B.: Image restoration using convolutional auto-
encoders with symmetric skip connections. arXiv preprint arXiv:1606.08921 (2016)

6. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML-10), pp. 807–814 (2010)

7. Wintermark, M., Lev, M.: FDA investigates the safety of brain perfusion CT. Am.
J. Neuroradiol. 31(1), 2–3 (2010)

8. Xie, L., Yuille, A.: Genetic cnn. arXiv preprint arXiv:1703.01513 (2017)
9. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in

deep neural networks? In: Advances in Neural Information Processing Systems,
pp. 3320–3328 (2014)

10. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser:
residual learning of deep cnn for image denoising. IEEE Trans. Image Proc. 26(7),
3142–3155 (2017)

http://arxiv.org/abs/1606.08921
http://arxiv.org/abs/1703.01513

	Neural Network Evolution Using Expedited Genetic Algorithm for Medical Image Denoising
	1 Introduction
	2 Methodology
	3 Experiments
	4 Conclusions
	References




