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Abstract. High-resolution (HR) magnetic resonance images (MRI) provide
detailed anatomical information important for clinical application and quanti-
tative image analysis. However, HR MRI conventionally comes at the cost of
longer scan time, smaller spatial coverage, and lower signal-to-noise ratio
(SNR). Recent studies have shown that single image super-resolution (SISR), a
technique to recover HR details from one single low-resolution (LR) input
image, could provide high quality image details with the help of advanced deep
convolutional neural networks (CNN). However, deep neural networks consume
memory heavily and run slowly, especially in 3D settings. In this paper, we
propose a novel 3D neural network design, namely a multi-level densely con-
nected super-resolution network (mDCSRN) with generative adversarial net-
work (GAN)–guided training. The mDCSRN trains and inferences quickly, and
the GAN promotes realistic output hardly distinguishable from original HR
images. Our results from experiments on a dataset with 1,113 subjects shows
that our new architecture outperforms other popular deep learning methods in
recovering 4x resolution-downgraded images and runs 6x faster.
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1 Introduction

High spatial resolution MRI produces detailed structural information, benefiting clin-
ical diagnosis, decision making, and accurate quantitative image analysis. However,
due to hardware and physics limitations, high-resolution (HR) imaging comes at the
cost of long scan time, small spatial coverage, and low signal to noise [1]. The ability to
restore an HR image from a single low-resolution (LR) input would potentially
overcome these drawbacks. Therefore, single image super-resolution (SISR) is an
attractive approach, as it requires only a LR scan to provide an HR output without extra
scan time. But SR is a challenging problem because of its underdetermined nature [2].
An infinite number of HR images can produce the same LR image after resolution
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degradation. This makes it very difficult to accurately restore texture and structural
details. A large portion of previous methods frame SR as a convex optimization
problem, to find a plausible HR solution while balancing regularization terms [1, 3].
However, regularization terms require a priori knowledge of the image distribution,
often based on experimental assumptions. Popular constraints like total variation
implicitly assume that the image is piecewise constant, which is problematic for images
with many local details and tiny structures. On the other hand, learning-based
approaches do not require such well-defined priors. Especially, deep learning-based
techniques have shown great improvement in SISR for images with abundant details,
because of its non-linearity and extraordinary ability to imitate accurate transformation
between LR and HR in difficult cases. Super-Resolution Convolutional Neural Net-
works (SRCNNs) [4] and their more recent Faster-SRCNNs (FSRCNNs) [5] draw a lot
of attention as they showed that simple structured CNNs can produce outstanding SISR
results of 2D natural images.

However, those previous adapted deep-learning approaches do not fully solve the
puzzle in the medical image SR problem. First, many medical images are 3D volumes,
but previous CNNs only work slice by slice, discarding information from continuous
structures in the third dimension. Second, 3D models have far more parameters than 2D
models, raising a challenge in memory consumption and computational expenses,
making them less practical. Finally, the most widely used optimization objective of
CNN is pixel/voxel-wise error like mean squared error (MSE) between model esti-
mation and the reference HR. But as mentioned in [6], MSE and its derivative Peak
Signal to Noise Ratio (PSNR) do not directly represent the visual quality of restored
images. Thus, using MSE as the only target leads to overall blurring and low perceptual
quality.

In this paper, we propose a 3D Multi-Level Densely Connected Super-Resolution
Networks (mDCSRN) to fully solve the above problems. By utilizing a densely con-
nected network [7], our mDCSRN is extremely light-weight. When optimized by
intensity difference, it provides the state-of-art performance while keeping the model
much smaller and faster. Then when trained with a Generative Adversarial Network
(GAN), it improves further, outputting sharper and more realistic-looking images.

2 Method

Our proposed SISR neural network model aims to learn the image prior for inversely
mapping the LR image to the reference HR image. The model only takes LR images to
produce SR images. During the training, HR reference will be used to guide the
optimization of the model’s parameters. During deployment, SR images can be gen-
erated by the model based on the input LR. Details are provided in the followings:

2.1 Background

The resolution downgrading process from an HR image X to a LR image Y can be
presented as:
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Y ¼ f Xð Þ; ð1Þ

where f is the function causing a loss of resolution. The SISR process is to find an
inverse mapping function g �ð Þ � f�1 �ð Þ to recover HR image X̂ from a LR image Y:

X̂ ¼ g Yð Þ ¼ f�1 Yð ÞþR; ð2Þ

where f�1 is the inverse of f and R is the reconstruction residual.
In a CNN SISR approach, three different steps are optimized together: feature

extraction, manifold learning, and image reconstruction. During the training, the dif-
ference between reconstructed images and ground truth images is not only used to
adjust reconstruction layer to restore better images from manifold, but also to guide
extraction of accurate image features. This mingling of different components makes it
possible for neural network to achieve state-of-art performance among other SISR
techniques [4].

2.2 Training a SR Network with GAN

The most intuitive way to optimize the reconstruction is by minimizing the voxel wise
difference such as absolute difference (L1 loss) or mean square error (L2 loss).
However, minimizing L1 or L2 loss leads to solutions which resemble a voxel-wise
average of possible HR candidates, which does not penalize the formation of artificial
image features at the neighbor or patch level. Thus, the output tends to be over-blurred
and implausible to the human eye. For better optimization, we incorporated the idea
from Ledig et al. [6] to use a Generative Adversarial Network (GAN)–based loss
function.

The GAN framework has two networks: a generator G and a discriminator D. The
basic idea of a GAN is to train a G to produce images with rich details while simul-
taneously training a D to distinguish the given image as either real or generated. At the
end of the training, D will be a very good classifier to separate real and generated
images, while the G can generate realistic looking images according to D. The
advantage of using GAN is that it can be optimized without a predesigned loss function
for a specific task. In SISR, SRGAN was proposed by [6], who showed that adding
GAN’s D loss to guide the G’s training yields high perceptual quality.

However, training of a GAN presents its own challenges. During training, G and
D must be balanced to evolve together. If either of them becomes too strong, the
training will fail, and G can learn nothing from D. For 2D natural images, a lot of effort
have been made to stabilize the training process. However, these approaches greatly
rely on the network structure and have yet to be described for newer architectures like
DenseNet. To stabilize the training process, the Wasserstein GAN (WGAN) authors [8]
observed that the failure of GAN training is due to its optimization toward Kullback-
Leibler divergence between real and generated probability. When there is little or no
overlap between them, which is very common in the early stage of training, the gra-
dient from the discriminator will vanish and the training will stall. To address this issue,
WGAN was proposed. Its loss function approximately optimizes Earth Mover
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(EM) distance, which can always guide the generator forward. WGAN enables almost
fail-free training and produces quality as good as vanilla GAN. Additionally, the EM
distance between real and generated images from D can be regarded an indicator of the
image quality. In this work, we used WGAN for additional guiding during training.

2.3 Need for Efficient 3D Super-Resolution Network

It has been shown that 3D super-resolution models outperforming 2D counterparts by a
large margin, thanks to the fact that 3D model directly learns the 3D structure of MRI
volumetric images [9]. However, one significant drawback of a 3D model is that 3D
deep learning model usually has a much larger number of parameters due to the extra
dimensions of convolutional filters. For example, a relatively shallow 2D FSRCNN has
only 12,000 parameters while its 3D version has 65,000, a > 5x difference. The number
of parameters determines the model size and computation cost of a deep learning
network, which is a key issue to consider for practical use.

Recently, DenseNet has shown that by using dense skip connections, we can
dramatically reduce the network size while maintaining state-of-art performance in
natural image classification. Yet, even memory-efficient DenseNets have too many
parameters when constructed in 3D. The basic idea of densely connection from Den-
seNet was applied here, but we also include a new architecture that uses an extra level
of skip connections. This not only helps to reduce the parameter number but also
speeds up the computation. We discuss the detailed design of mDCSRN in the fol-
lowing section.

2.4 Proposed 3D Multi-level Super-Resolution Network

A recent study [9] shows that Densely Connected Super-Resolution Network (DCSRN)
with a single DenseBlock, is already capable of capturing image features and restoring
super-resolution images, outperforming other state-of-art techniques. But further
improvement of the network performance is required to make use of a deeper model to
catch more complex information in SR process. However, the memory consumption of
a DenseNet increases dramatically as the number of layers increases, which makes it
not feasible to train or deploy a deeper DCSRN.

To address this problem, we propose a multi-level densely connected structure,
where a single deep DenseBlock is split into several shallow blocks. As shown in
Fig. 1(B), each DenseBlock takes the output from all previous DenseBlock and is
directly connected to reconstruction layer, following the same principle of DenseNet.
Those skip connections provide direct access to all former layers including the input
enables uninterrupted gradient flow, which is proven to be more efficient and less
overfit. However, unlike original DenseNet, there is no pooling layer in mDCSRN, so
mDCSRN can make full use of information in full resolution.

Another improvement is to add a 1 � 1 � 1 convolutional layer as a compressor
before all the following DenseBlocks. One key attribute to empower deep learning
models to generalize so well is that the model has an information compression that
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forces the model to learn universal features to avoid overfitting. In our design, the
compressors bottleneck the network to the same width for each DenseBlock. This is
expected to provide at least two benefits: (1) To reduce the memory consumption from
hyperbolically to linearly dependent on depth; (2) To equally weight each DenseBlock,
preventing later DenseBlocks (which takes care of conceptual level image features)
from dominating the network with more parameters, thereby forcing the network not to
overlook local image features that are central to the super-resolution task.

2.5 Design of Loss Function

In our work, we utilized gradient penalty variants of WGAN, namely WGAN-GP to
speed up the training convergence. Our loss function has two parts: intensity loss lossint
and GAN’s discriminator loss lossGAN:

loss ¼ lossint þ klossGAN ð3Þ

Fig. 1. Architecture of (A) DenseBlock with 3 � 3 � 3 convolutions and (B, C) mDCSRN-
GAN Network. The G is b4u4(4 blocks, each has 4 unites) mDCSRN. The first convolutional
layer outputs 2k (k = 16) feature maps, and each compressor shrinks down the feature maps to 2k
via a 1 � 1 � 1 convolution. The final reconstruction layer is an another 1x1x1 convolution.
The D is identical to SRGAN except BatchNorm is replaced by LayerNorm, suggested by
WGAN-GP.
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where k is a hyperparameter that we set to 0.001. We used the absolute difference (L1
loss) between network output SR and ground truth HR images as the intensity loss:

lossint ¼ lossL1=LHW ¼
XL

z¼1

XH

y¼1

XW

x¼1
IHRx;y;z � ISRx;y;z

���
���=LHW ð4Þ

where ISRx;y;z is the super-resolution output from the deep learning model and IHRx;y;z is the
ground truth HR image patch. We use GAN’s discriminator loss as the additional loss
to the SR network:

lossGAN ¼ lossWGAN;D ¼ �DWGAN;hðISRÞ ð5Þ

where DWGAN;h is the discriminator’s output digit from WGAN-GP for SR images.

2.6 LR Images Generation

To evaluate an SR approach, we need to generate LR images from ground truth HR
images. LR images are generated following the same steps as in [9]: (1) converting HR
image into k-space by applying FFT; (2) downgrading the resolution by truncating
outer part of 3D k-space with a factor of 2 � 2; (3) converting back to image space by
applying inverse FFT and linearly interpolating to the original image size. This mimics
the actual acquisition of LR and HR images by MRI scanners.

3 Experiments

3.1 Dataset and Data Preparation

To better demonstrate the generalization of the deep learning model, we used a large
publicly accessible brain structural MRI database, the human connectome project. 3D
T1 W images from a total of 1,113 subjects were acquired via Siemens 3T platform
using 32-channel head coil on multiple centers. The images come in high spatial
resolution as 0.7 mm isotropic in a matrix size of 320 � 320 � 256. These high-
quality ground truth images provide detailed small structures, which is a perfect case
for SR project. The whole dataset is split into 780 training, 111 validation, 111 eval-
uation and 111 test samples by subject. No subjects nor image patches appear twice in
different subsets. Validation set is used for monitoring training process and evaluation
set is used for hyper-parameters selection. We only use test set for final performance
evaluation to avoid fine-tuning model favorable to test set data.

The original images were used as ground-truth HR images, and then degraded to
LR. We used the exact same process of patching and data augmentation as in [9].
However, we merged the patches without overlapping, which makes model run even
faster and results in less blurring. We left a margin of 3 pixels to avoid artifacts on the
edge.
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3.2 Training Parameters and Experiment Setting

The models were implemented in Tensorflow on a workstation with Nvidia GTX 1080TI
GPU. The DenseBlock in mDCSRN setting is similar with DCSRN, where all 3D
convolutional layers had filter with size 3 � 3 � 3, growth rate k = 16. For comparison,
we picked up relatively small network FSRCNN [9] and more complicated state-of-art
SRResNet [6]. We selected the same hyper-parameters according to 2D FSRCNN [5].
And we extended the 2D convolution to 3D for both FSRCNN and SRResNet.

For non-GAN networks, ADAM optimizer with a learning rate 10−4 was used to
minimize the L1 loss function with a batch size of 2. We trained for 500 k steps as no
significant improvement afterward. For GAN experiments, we transfer the weights
from well-trained mDCSRN in non-GAN training as the initial G. For the first 10 k
steps, we trained the discriminator only. After then for every 7 steps of training dis-
criminator, we trained the generator once; and every 500 steps we train discriminator
for an extra 200 step alone, which makes sure that discriminator is always well-trained,
as suggested in WGAN. Adam optimizer with 5 � 10−6 is used to optimize both G
network for 550 k steps, with little improvement after that.

To demonstrate the effectiveness of mDCSRN compared with DCSRN, we made
four different network setups with varied block number(b) and unit number(u). A net-
work with single 8-unit DenseBlock is annotated as b1u8 and a network with four
DenseBlocks each has 4 dense-units is annotated as b4u4, respectively. We used three
image metrics: subject-wise average structural similarity index (SSIM), peak signal to
noise ratio (PSNR), and normalized root mean squared error (NRMSE), to measure the
similarity between SR image and reference HR image in the 2 � 2 down-sampled plane.

3.3 Results

The quantitative results from non-GAN approaches are shown in Table 1. The
parameters and running speed of each networks are also listed in Table 1. DCSRN
b1u8 and mDCSRN b2u4 had the same depth of network, but the later obtained
marginally better results and reduce parameters and running time by more than 30%.
Among all variants, the largest network b4u4 has the best performance without too
much sacrifice in speed.

Table 1. The results of SSIM, PSNR and NRMSE for different DCSRN architectures. With the
same depth, b2u4 has a slightly better performance than b1u8 with less number of parameters and
computation operation. The deepest network b4u4 had an average runtime for a whole 3D MRI
of a subject just around 20 s while has the best performance.

DCSRN b1u8 mDCSRN b2u4 mDCSRN b3u4 mDCSRN b4u4

SSIM PSNR NRMSE SSIM PSNR NRMSE SSIM PSNR NRMSE SSIM PSNR NRMSE

mean 0.9371 35.35 0.0906 0.9381 35.46 0.0895 0.9402 35.56 0.0884 0.9424 35.88 0.0852

std 0.0053 0.79 0.0038 0.0053 0.78 0.0038 0.0052 0.79 0.0038 0.0051 0.78 0.0038

#parm 0.307 M 0.200 M 0.304 M 0.412 M

#ops 1.247 M 0.813 M 1.236 M 1.672 M

Time(s) 13.20 9.74 15.13 20.87
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mDCSRN b4u4 was compared with bicubic interpolation as well as other neural
networks FSRCNN and SRResNet (Table 2). mDCSRN obtained a large advantage
against FSRCNN methods and is slightly better than SRResNet but runs more than 6x
faster. Additionally, our mDCSRN-GAN provides much sharpened and visually
plausible images compared with non-GAN approaches. Figure 2 demonstrates super-
resolution results of one random subject in the 2 � 2 resolution degrading plane.
Among non-GAN methods, the small vessels in mDCSRN are more distinguishable
than in other neural networks. However, mDCSRN-GAN provides much better overall
image quality: not only does the vessel maintains the same shape and size as in the
ground-truth HR image, but the gaps between vessel and gray matter are also much
clearer (see red arrows). The mDCSRN-GAN result is almost indistinguishable from
the ground truth.

Table 2. Performance comparison between bicubic interpolation, 3D FSRCNN, 3D SRResNet
and our proposed mDCSRN b4u4. mDCSRN provides similar image quality to SRRestNet but
6x faster and provides much better image quality than bicubic interpolation and FSRCNN.
*FSRCNN has large CNN kernels (size: 5 and 9) that are extremely computationally expensive,
though small #ops, it takes longer time than mDCSRN which only has small filters (size: 3).

Bicubic Interpolation 3D FSRCNN* 3D SRResNet mDCSRN b4u4

SSIM PSNR NRMSE SSIM PSNR NRMSE SSIM PSNR NRMSE SSIM PSNR NRMSE

mean 0.8377 29.07 0.1873 0.9211 34.11 0.1045 0.9412 35.71 0.0869 0.9424 35.88 0.0852

std 0.0088 0.90 0.0087 0.0059 0.77 0.0042 0.0052 0.79 0.0038 0.0051 0.78 0.0038

#parm – 0.064 M 2.005 M 0.412 M

#ops – 0.261 M* 8.043 M 1.672 M

Time(s) – 21.27 132.71 20.87

Fig. 2. Illustration of the nearest neighbor(NN) and bicubic interpolation, 3D FSRCNN, 3D
SRResNet, mDCSRN, mDCSRN-GAN reconstruction results, and corresponding HR images.

98 Y. Chen et al.



4 Conclusion

We have presented a novel SISR method based on 3D mDCSRN-GAN for MRI. We
showed that mDCSRN-GAN can recover local image textures and details more
accurately, and 6 times more quickly than current state-of-art deep learning approaches.
This new technique would allow 4-fold reduction in scan time while maintaining
virtually identical image resolution and quality.
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