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Abstract. Accurate segmentation of left ventricle (LV) from echocar-
diograms is a key step toward diagnosis of cardiovascular diseases. Man-
ual segmentation of the LV done by sonographers or cardiologists can be
time-consuming, and its accuracy is subjective to the operator’s expe-
rience and skill level. Automation of LV segmentation is a challenging
task due to a number of factors such as the presence of speckle and a
high operator-dependent variability in acquiring echocardiography data.
In this paper, we present a method that integrates deep recurrent fully-
convolutional networks and optical flow estimation to accurately segment
the LV in the apical four-chamber (A4C) view. Our method analyzes the
temporal information in echocardiogram cines with the use of convolu-
tional bi-directional long short-term memory units. Furthermore, it uses
optical flow motion estimation between consecutive frames to improve
the segmentation accuracy. The proposed method is evaluated over an
echo cine dataset of 566 patients. Experiments show that the proposed
system can reach a noticeably high mean accuracy of 97.9%, and mean
Dice score of 92.7% for LV segmentation in A4C view.

Keywords: Fully convolutional network · Recurrent neural network
Convolutional bi-directional LSTM · Deep learning
Video segmentation · Left ventricle segmentation · Echocardiography

1 Introduction

Cardiovascular disease is the foremost cause of mortality worldwide, resulting in
an estimated 17.7 million deaths annually [1]. Assessment of left ventricle (LV)
function is considered as a key metric to determine the risk of heart disease.
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Echocardiography (echo) is an imaging technique that is often used to inspect
cardiovascular function. Segmentation of the LV in echo images is used to derive
clinically important measurements such as LV ejection fraction (EF) estimation
and wall motion abnormality detection [10]. In particular, the current clinical
practice of LV EF estimation requires an expert to manually trace the endocar-
dial border of LV on both end-diastole (ED) and end-systole (ES) frames of an
echo cine clip. However, manual LV segmentation is a laborious procedure and
its accuracy is often dependent on the operator’s experience, resulting in a low
test-retest reliability [3].

A number of research groups have attempted to automate the segmentation
of LV in echo and also other modalities [3,4,9,11,14,18]. Methods to-date can
be categorized into active contour models, deformable templates, level sets, and
supervised learning approaches [3,10]. Specifically, in recent years, deep learn-
ing [7] has been proposed for segmentation and quantification of LV in computed
tomography (CT) and cardiac magnetic resonance imaging (CMR) [9,17,18]. For
CT images, Zreik et al. [18] propose a two stage LV segmentation method, where
the first stage detects a bounding box containing LV by using Convolutional Neu-
ral Networks (CNN), and the second stage performs LV segmentation by using
voxel classification within the bounding box. An extensive literature review of
methods for LV segmentation in CMR is presented in [9,17]. Specifically, Ngo
et al. propose a level-set model, initialized by LV map obtained from a first
deep belief network (DBN), and constrained by the location of endocardial and
epicardial borders computed by a second DBN. Xue et al. [17] propose a deep
network model to quantify LV measurements in CMR as a multi-task relation-
ship learning. In [17], features extracted from cardiac cine using CNNs are fed
into two branches of recurrent neural networks, one combined with a Bayesian-
based multi-task relationship module for LV quantification, and another branch
is ended with a softmax layer to detect the cardiac phase. Most recently, several
works investigated deep learning for LV segmentation in echo [4,11,14]. In [11],
anatomical priors based on the heart structure are used to regularize training of
a deep network for segmentation of LV in 3D ultrasound. Also the works of [4,14]
propose to use U-Net and its variations [13] for per frame segmentation of LV in
echo cine.

Temporal information encoding is a key research problem in video analysis.
Various methods in computer vision have shown that by combining temporal
information with shape features, using tools such as recurrent neural networks
and optical flow maps, the accuracy of video classification [8], segmentation [16],
and interpretation [6] can be improved. Recently, in the area of medical imaging,
adaptation of recurrent fully convolutional neural networks have shown promis-
ing results for detection of measurement points in echo [15], segmentation of the
heart in CMR [12], and 3D biomedical image segmentation [5].

In this paper, we present a deep learning architecture for automatic segmen-
tation of the LV from an entire echo cine. The individual frames of a cardiac
echo cine are first processed by a U-Net encoder. The encoded temporal depen-
dency information of the past frames are maintained via stacked bidirectional
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convolutional LSTM. Furthermore, temporal displacement information of mov-
ing objects between the consecutive frames is provided to the network by exter-
nally computed optical flow motion vectors. During the training phase, our
method only requires LV annotation in ES and ED frames. Therefore, our archi-
tecture can be easily trained on most clinically obtained patient data with-
out providing annotation beyond those that are normally recorded as part of
standard-of-care in echo. In the test phase, our method can be used to infer
accurate LV segmentation for the entire cine loop. Our method is quantita-
tively evaluated on an echo cine dataset consisting of 648 A4C echo cines that
were gathered from 566 patients. We demonstrate that the proposed method
can achieve a noticeably high segmentation accuracy of 97.9% with standard
deviation of less than 1%.

2 Materials and Method

2.1 Dataset Information and Clinical Background

Our echo imaging data is collected from the Picture Archiving and Communica-
tion System at Vancouver General Hospital, with ethics approval of the Clinical
Medical Research Ethics Board, in consultation with the Information Privacy
Office. Our data consist of a collection of 648 A4C view echo studies from 566
patients, with about 34,000 total number of frames, captured by using Philips
iE33 and GE Vivid-i/-7 ultrasound machines. In clinical practice, A4C is one of
the primary standard views for LV EF estimation and other cardiac functions
analyses. Each study was performed by an expert sonographer, where the LV
boundary is traced in two frames (i.e., ED and ES phase frames). The ED phase
refers to the cardiac structure at the end of relaxing, i.e., the end of ventricle
loading, and the ES phase refers to the cardiac structure at the end of contrac-
tion, i.e., the beginning of ventricle filling, respectively. We consider existing
annotations at ED and ES phase as ground truth to train our model. In order to
evaluate the performance of the model on the entire cine, we sought assistance
from an experienced cardiologist, who helped us with annotation of a randomly
selected frame between ED and ES frame in our test set. The cardiologist also
validated our existing annotation of ED and ES frames by sonographers. An
example of sample frames in our dataset and the corresponding cardiologist’s
annotation of LV segmentation is shown in Fig. 1.

Fig. 1. Examples of sample frames and corresponding annotations.
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Fig. 2. Block diagram of the proposed architecture to integrate shape, temporal and
motion information for LV segmentation in echo cine.

2.2 Network Architecture

The proposed LV segmentation architecture is depicted in Fig. 2, where the indi-
vidual components of the pipeline are explained below.

Temporal Window: In the first stage, we define a collection of d consecutive
frames as a temporal window. This set is fed to the network and the final output
would be the segmentation mask of the last frame in the window. The last
frame in the temporal window is called the “cursor” frame. The segmentation
prediction of the entire cine can be obtained by sliding the model over the
temporal dimension, with stride = 1.

U-Net Encoder: In the next stage of the network, we use U-Net’s [13] encoder
schema to process the input echo frames. More specifically, each frame is passed
through a number of stacked convolutional layers and pooling layers. A dense
representation of the per-frame encoded features is obtained by the end of the
encoding stage.

Optical Flow Integration: A second U-Net encoder model is used to process
the optical flow motion vector maps between each pair of consecutive frames. We
use the optical flow algorithm to track the motion of walls of heart chambers,
providing the network with additional information for deriving segmentation. In
our method, optical flow is calculated between each two consecutive frames in a
temporal window with the use of Horn-Schunck algorithm [2]. Each optical flow
input to the network is a two-channel image, showing the direction and distance
of movement in both x and y axes. The processed optical flow information goes
though a separate U-Net encoder, which is then concatenated with the intensity
image encoded representation. Since the speckle motion of background tissue has
a much lower velocity than the heart muscle motion, the motion of background
tissue can be filtered out by convolutional layers in the U-Net encoder model.
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Convolutional LSTM: In the third stage, the concatenated features from
echo frames intensity information and optical flow maps are processed by a
stack of two convolutional bi-directional recurrent long short term memory (Bi-
directional LSTM) layers. Our intention of using convolutional Bi-directional
LSTM comes in two-fold: (1) Bi-directional LSTM does not only encode tem-
poral feature from the past context but also from the future context, which has
been observed to handle noisy data well in speech recognition, thus making it
a good candidate to handle noisy echo data; (2) the convolutional implementa-
tion of recurrent neural networks can capture spatio-temporal correlation better
than conventional fully-connected recurrent neural networks, which based on our
experiments, can be beneficial to localize the segmentation prediction.

U-Net Decoder: During the decoding stage, the representation generated from
the Bi-directional LSTM is fed through a pipeline of up-sampling layers in order
to obtain the final prediction of segmentation mask, where the architecture of
the up-sampling layers is in the reverse order of the U-Net encoder architecture.
The skip connections by-pass layers to connect an encoder feature map with
corresponding decoder feature map of the same size. In each slide of the temporal
window over echo clip, the output segmentation map corresponds to the LV
location in the last frame of the temporal window.

Fig. 3. Example LV segmentation results on six different subjects.

3 Experiments

The echo studies of the 566 patients are randomly assigned into training and test
sets, with a split ratio of 80% and 20% of total amount of patients, respectively.
This results in 453 patients (with 520 echo studies) in the training set and
remaining 113 patients (with 128 echo studies) in the test group. Also, 20% of
the training data is held as a validation set for cross-validation of the training
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hyper-parameters. The echo cine frames are resized to 128 × 128. The network is
implemented in Keras with the use of Tensorflow (Google Corp., Mountain View,
CA) backend. The network weights are initialized by using a normal distribution.
ReLU activation is used in all constitutional layers of the network, and the
activation in the prediction layer is a sigmoid function. Dice loss is used as the
network’s objective function. We use Adam optimizer with the learning rate of
1e−4, and batch size of 10. Finally, d in the temporal window is set to 4 frames.

Testing Criteria: Note that in the standard clinical procedure, the LV trac-
ing is routinely done in only the ED and ES frames of the A4C view, therefore
we report the Dice score and accuracy on the ED and ES frames. In order to
report segmentation accuracy for in-between frames, since developing per-frame
ground truth for all echo cine frames is very time consuming, we approximated
the full cine segmentation performance by evaluating the performance on a ran-
domly selected frame between the ED and ES frames against an expert manual
annotation. This frame is named RF (Random Frame) in Table 1.

Example visual results of the LV tracking by the proposed method compared
to the ground truth are shown in Fig. 3. As can be seen, the proposed model
accurately detects the LV wall and shape.

Table 1. Empirical evaluation of the proposed method. Best results are in bold.

Method Dice Score(%) Accuracy(%)

ED RF ES ED RF ES

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

U-Net Per Frame 91.2 3.9 90.2 5.3 88.9 4.9 97.2 1.1 97.3 1.0 97.3 0.9

U-Net-conv-

BiLSTM

93.3 3.4 92.1 3.8 90.1 8.8 97.8 0.9 97.7 1.0 97.8 1.0

U-Net-conv-

BiLSTM-OptFlow

93.6 3.0 92.5 3.5 92.1 4.1 97.9 0.9 97.8 1.0 97.9 1.0

Model Comparison: We compare the performance of the proposed deep learn-
ing architecture (i.e., U-Net-conv-BiLSTM-OptFlow) with the off-the-shelf 2D
U-Net implementation [14] (i.e., U-Net (Per Frame) in Table 1) that was trained
with only the ED and ES frame segmentation ground truth, and also with
an architecture of combining 2D U-Net with convolution Bi-directional LSTM
(i.e., U-Net-conv-BiLSTM), in Table 1. It is clear that the proposed architecture
improves all segmentation metrics. In particular, the combination of U-Net and
convolutional Bi-directional LSTM architecture consistently increases the Dice
score on all ED, RF and ES frames. Furthermore, the integration of Bi-directional
LSTM and optical flow information shows further improvement of segmenta-
tion performance. Most importantly, using optical flow information increases
the robustness of LV tracking in echo data given the standard deviation of the
reported results. Paired t-tests indicate there is a statistically significant differ-
ence between every pairs of the compared network architectures for both Dice
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Score and Accuracy (p < 0.05). Also, in terms of area under the Receiver Oper-
ating Characteristic Curve (AUC), our analysis show U-Net per frame has sub-
stantially lower AUC (AUC = 0.94) than U-Net-conv-BiLSTM and U-Net-conv-
BiLSTM-OptFlow (AUC = 0.97 for both methods). In addition, it can be seen
in Fig. 3 that per frame U-Net can be misled by image artifacts and reduction
in image quality. Both U-Net-conv-BiLSTM and U-Net-conv-BiLSTM-OptFlow,
which utilize temporal information, show more consistent segmentation results.

Fig. 4. Sample failed case of our method. Left to right: input echo frame, ground truth
by cardiologist, and segmentation by the compared methods.

4 Conclusion and Discussion

Accurate LV segmentation in echocardiograms is an important component to
diagnose critical cardiovascular disease. In this work, we present a method based
on deep recurrent fully convolutional networks and optical flow for LV tracking
in A4C echo cine data. We use convolutional Bi-directional LSTM to encode
temporal information from a short number of frames. We also use optical flow
information as an additional input to improve the segmentation accuracy and
robustness. The proposed model is evaluated on an echo dataset consist of 648
echo studies from 566 patients, and shows advantageous over two compared
models. Sample visual comparison of our proposed method can be seen in Fig. 3.
The first row in Fig. 3 shows sample cases where all of the three compared
methods provide an acceptable tracking of LV. The second row of Fig. 3 shows
samples where U-Net per frame has been mislead by artifacts in echo data. Also,
poor quality of captured echo in the cursor frame has resulted in high errors
by per frame U-Net. This is while incorporating temporal and motion infor-
mation in U-Net-conv-BiLSTM-Optflow results in a more smooth and accurate
tracking of LV. The sample in the right column of the second row in Fig. 3
shows a case where adding information of optical flow has been advantageous
comparing the blue contour (U-Net-conv-BiLSTM) with the green segmentation
(U-Net-conv-BiLSTM-OptFlow). A sample failed case of our proposed method
(U-Net-BiLSTM-OptFlow) is shown in Fig. 4. Captured echo with a low qual-
ity throughout the whole cine could be more challenging in terms of accurate
segmentation of LV, as is the case with the shown sample. Low quality echo
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misses the location of the heart wall chambers and makes it hard to annotate
LV even for expert human. Future work will include using the proposed archi-
tecture to automatically estimate various cardiac measurements, including the
Left Ventricle Ejection Fraction.
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