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Abstract. Convolutional neural networks (CNNs) have been success-
fully employed in recent years for the detection of radiological abnor-
malities in medical images such as plain x-rays. To date, most studies
use CNNs on individual examinations in isolation and discard previ-
ously available clinical information. In this study we set out to explore
whether Long-Short-Term-Memory networks (LSTMs) can be used to
improve classification performance when modelling the entire sequence
of radiographs that may be available for a given patient, including their
reports. A limitation of traditional LSTMs, though, is that they implic-
itly assume equally-spaced observations, whereas the radiological exams
are event-based, and therefore irregularly sampled. Using both a simu-
lated dataset and a large-scale chest x-ray dataset, we demonstrate that
a simple modification of the LSTM architecture, which explicitly takes
into account the time lag between consecutive observations, can boost
classification performance. Our empirical results demonstrate improved
detection of commonly reported abnormalities on chest x-rays such as
cardiomegaly, consolidation, pleural effusion and hiatus hernia.
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1 Introduction

Deep learning approaches have exhibited impressive performance in medical
imaging applications in recent years [2,7,19]. For instance, convolutional neural
networks (CNNs) have had some success in detecting and classifying radiologi-
cal abnormalities on chest x-rays, a particularly complex task [2,12,15,21]. The
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majority of these studies have been designed for cross-sectional analyses, viewing
a single image in isolation, and discard the fact that a patient may have had
previous medical imaging examinations for which the radiological reports are
also available. It is standard practice for radiologists to take clinical history into
account to add context to their report by using comparison to previous imag-
ing. Some abnormalities will be long-standing, but others may change over time,
with varying clinical relevance. Often in elderly patients or those with a history
of smoking, the baseline x-ray appearances, i.e. when that patient is “well”, can
still be abnormal. If individual films are viewed in isolation, it can be challenging
to tell with certainty if there are acute findings. If previous imaging is available,
it is possible to determine if there has been interval change, for example, acute
consolidation (indicating infection). As with humans, it is expected that a neu-
ral network can learn from previous patient-specific information, in this case all
prior chest radiographs for that patient and their corresponding reports.

The motivation for this work is to assess the potential of recurrent neural
networks (RNNs) for the real-time detection of radiological abnormalities when
modelling the entire series of past exams that are available for any given patient.
In particular, we set out to explore the performance of Long Short-Term Mem-
ory (LSTM) networks [8,10], which have lately become the method of choice in
sequential modelling, especially when used in combination with CNNs for visual
feature extraction [6,20]. The technical challenge faced in our context is that
sequential medical exams are event-based observations. As such, they are col-
lected at times of clinical need, i.e. they are not equally spaced, and the number
of historical exams available for each patient can vary greatly. Figure 1 shows
four longitudinal chest x-rays acquired on the same patient over a certain period
of time. This figure also illustrates other challenges faced when modelling this
type of longitudinal data: the images may be aquired using different x-ray devices
(resulting in different image quality, i.e. resolution, brightness, etc.), there may
be differences in patient positioning (i.e. supine, erect, rotated, degree of inspira-
tion), differences in projection (postero-anterior and antero-posterior), and not
all images are equally centred (i.e. there can be rotations, translations, etc.).

As LSTMs are typically applied on regularly-sampled data [9,16,17], they
are ill-suited to work with irregular time gaps between consecutive observations,
as previously noted [3,13]. This is a particularly important limitation in our
context as certain radiological abnormalities tend to be observed for longer peri-
ods of time whereas others are short-lived. In this article we demonstrate that
an architecture combining a CNN with a simple modification of the standard
LSTM is able to handle irregularly-sampled data and learn the temporal dynam-
ics of certain visual features resulting in improved pattern detection. Using both
simulated and real x-ray datasets, we demonstrate that this capability yields
improved image classification performance over an LSTM baseline.

2 Motivating Dataset and Problem Formulation

The dataset used in this study was collected from the historical archives of
the PACS (Picture Archiving and Communication System) at Guy’s and St.
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Fig. 1. Example of longitudinal x-rays for a given patient.

Thomas’ NHS Foundation Trust, in London, during the period from January
2005 to March 2016. The dataset has been previously used for the detection of
lung nodules [14] and for multi-label metric learning [1]. It consists of 745 480
chest radiographs representative of an adult population and acquired using 40
different x-ray systems. Each associated radiological report was parsed using a
natural language processing system for the automated extraction of radiological
labels [5,14]. For this study, we extracted a subset of 80 737 patients having a
history of at least two exams, which resulted in 337 575 images (with 232 610 used
for training and 104 965 for testing). Each image was scaled to a standard format
of 299×299 pixels. The resulting dataset has an average of 4.18 examinations per
patient with an average of 180.29 days between consecutive exams per patient.

In what follows, each individual sequence of longitudinal chest x-rays along
with its associated vector of radiological labels is denoted as {Xt

i , l
t
i}, where

i = 1, . . . , N is the patient index and t = 1, . . . , Ti is the time index. Typical
chest x-ray datasets are characterised by relatively few examinations per patient
(e.g. Ti is around 4–5) and highly-irregular sampling rates. Our task is to predict
the vector of image labels lTi

i given the entire history of exams up to time Ti − 1
plus the current image, i.e. XTi

i .

3 Time-Modulated LSTM

LSTMs are a particular type of RNNs able to classify, process and predict time
series [8,10]. The internal state of an LSTM (a.k.a. the cell state or memory) gives
the architecture its ability to ’remember’. A standard LSTM contains memory
blocks, and blocks contain memory cells. A typical memory block is made of three
main components: an input gate controlling the flow of input activations into the
memory cell, an output gate controlling the output flow of cell activations, and
a forget gate for scaling the internal state of the cell. The forget gate modulates
how much information is used from the internal state of the previous time-step.
However, standard LSTMs are ill-suited for our task where the time between
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consecutive exams is variable, because they have no mechanism for explicitly
modelling the arrival time of each observation. In fact, it has been shown that
LSTMs, and more generally RNNs, underperform with irregularly sampled data
or time series with missing values [4,13]. Previous attempts to adapt LSTMs for
use with irregularly sampled datapoints have mostly focused on speeding up the
converge of the algorithm in settings with high-resolution sampled data [13] or
to discount short-term memory [3].

To address these issues, we introduce two simple modifications of the stan-
dard LSTM architecture, called time-modulated LSTM (tLSTM), both making
explicit use of the time indexes associated to the inputs. In the proposed archi-
tecture, all the images for a given patient are initially processed by a CNN
architecture, which extracts a set of imaging features, denoted by ̂Xt

i , at each
time step. The LSTM takes as inputs lt−1

i , i.e. the radiological labels describing
the images acquired at the previous time-step, the current image features, ̂Xt

i ,
and the time lapse between Xt−1

i and Xt
i , which we denote as δti . For the last

image in the sequence, the LSTM predicts the image labels, lti , called yt
i . Figure 2

provides a high-level overview of this model and the equations below define the
tLSTM unit:

ft = σ(Wfl ∗ lt−1 + Wfx ∗ ̂Xt + Wfj ∗ δt + bf ),

it = σ(Wil ∗ lt−1 + Wix ∗ ̂Xt + Wij ∗ δt + bi),

ot = σ(Wol ∗ lt−1 + Wox ∗ ̂Xt + Woj ∗ δt + bo),

ct = tanh(Wcl ∗ lt−1 + Wcx ∗ ̂Xt + Wcj ∗ δt + bc),
ht = ft ∗ ht−1 + it ∗ ct,

yt = ot ∗ tanh(ht)

(1)

Here, ht defines the internal state at time-step t, while ft, it and ot refer to the
forget, input and output gates at time-step t, respectively. These are all com-
puted as linear combinations of the vectors lt−1, ̂Xt and the scalar δt, and then
transformed by a sigmoid function, σ(·). The matrices denoted by W contain
learnable weights indexed by two letters (e.g. Wfl contains the weights of the
forget gate f for labels l, and so on). At time t = 1, we initialise lt−1

i =< 0 . . . 0 >
(an array of zeros) and δti = 0. The time lapses, δti , linearly modulate the infor-
mation inside the internal cell state as well as the output, forget and input gates.

A different variation of the previous model (tLSTMv2) uses the time lapse
only to modulate the internal state, ht. In this case, each δti actively contributes
to updating ht directly and, implicitly, to estimating the label vector yt, i.e.

ht = ft ∗ ht−1 + it ∗ ct + Wtj ∗ δt

yt = ot ∗ tanh(ht).
(2)

The form of the other updating equations, i.e. fg, it, ot and ct, is similar to those
in Eq. (1), without the Ws × δt elements.
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Fig. 2. An overview of the proposed architecture for image label prediction leveraging
all historical exams.

4 Simulated Data

In order to better assess the potential advantages introduced by the time-
modulated LSTM in settings where observations are event-driven and the under-
lying patterns to be detected are time-varying, we generated simulated data as
an alternative to the real chest x-ray dataset of Sect. 2. Simulating images enables
us to precisely control the sampling frequency at which the relevant visual pat-
terns appear and disappear over time as well as the signal to noise ratio. For this
study, we simulated a population of image sequences of varying lengths. Within
a sequence, each image consisted of a noisy background image containing one
or more randomly placed digits drawn from the set {0, 3, 6, 8, 9}. We simulated
three kinds of patterns inspired by the radiological patterns seen in real medi-
cal images: (i) rare patterns consisting of digits appearing with low probability;
(ii) common patterns consisting of rapidly appearing and resolving digits; (iii)
persistent labels, consisting of digits observed for extended periods of time. In
analogy to medical images, each digit in our simulation represents a radiological
abnormality to be detected, hence multiple (and possibly overlapping) digits are
allowed to coexist within an image. The time lapse δt was modelled as a uniform
random variable taking value in the interval [1, 10]. An example of simulated
images can be found in the Supplementary Material.

5 Experimental Results

In our experiments with the real x-ray dataset, the CNN component in our archi-
tecture conists of a pre-trained Inception v3 [18] without the classification layer.
The imaging features X̂t

i (an array 2048 elements) from the CNN are as used
as inputs for the LSTM component along with the image labels. We considered
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Table 1. Results on real data∗

Labels

cardio. consol. pleu. eff. hernia avg.

Inception v3

PPV 0.5477 0.4111 0.6149 0.5204 0.5235

NPV 0.9565 0.9002 0.9106 0.9958 0.9407

F-measure 0.6143 0.5151 0.6575 0.5193 0.5765

LSTM

PPV 0.6914 0.5841 0.7105 0.5369 0.6307

NPV 0.9406 0.8440 0.8895 0.9969 0.9177

F-measure 0.6199 0.4337 0.6531 0.5755 0.5705

tLSTMv1

PPV 0.5929 0.4831 0.6358 0,5821 0.5734

NPV 0.9565 0.9000 0.9251 0.9968 0.9445

F-measure 0.6399 0.5552 0.6891 0.5932 0.6193

tLSTMv2

PPV 0.5980 0.4876 0.6350 0.5461 0.5667

NPV 0.9572 0.8931 0.9120 0.9968 0.9397

F-measure 0.6447 0.5479 0.6696 0.5704 0.6081
∗Classification performance (PPV, NPP and F-measure)
of a baseline classifier (Inception v3) using only a single
image as input and three LSTM architectures using the
full sequence of longitudinal observations. tLSTMv1 and
tLSTMv2 are the proposed time-modulated LSTM archi-
tectures that explitely model time lapses.

four possible radiological labels: cardiomegaly, consolidation, pleural effusion and
hiatus hernia. The performance of the time-modulated LSTM models is assessed
by the PPV (Positive Predictive Value) and NPV (Negative Predictive Value)
along with F-score, i.e the harmonic mean of precision and recall.

We compared the performance of four models: the baseline CNN classifier
(Inceptionv3) that only uses each current image to predict the labels, but does
not exploit the historical exams for a given patient, and three variations of the
architecture illustrated in Fig. 2: one using the standard LSTM and the two
versions of time-modulated LSTM model introduced in Sect. 3. Both tLSTM
versions introduced noticeable performance improvements; see Table 1. In par-
ticular, tLSTMv1 yields an increase of ∼7% in F-measure over the baseline and
∼8% over a standard LSTM. Moreover, tLSTMv1 achieves a ∼9% improvement
in PPV over the baseline. Overall, tLSTM achieves improved performance over
the standard LSTM due to its ability to handle irregularly sampled data.

For the simulated dataset, we used a pre-trained AlexNet [11] as fea-
ture extractor in combination with three versions of the LSTM for modelling
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sequences of images. A full table with results can be found in the Supplementary
Material. We purposely introduced a sufficiently high level of noise in the visual
patterns so as to make the classification problem with individual images partic-
ularly difficult; accordingly, the single-image classifier did not achieve acceptable
classification results. Likewise, the architecture using a standard LSTM did not
introduce significant improvements due to the irregularly sampled observations.
On the other hand, larger classification improvements were achieved using the
time-modulated LSTM units as those were able to decode the sequential patterns
by explicitly taking into account the time gaps between consecutive observations.

6 Conclusions

Our experimental results suggest that the modified LSTM architectures, com-
bined with CNNs, are suitable for modelling sequences of event-based imaging
observations. By explicitly modelling the individual time lapses between con-
secutive events, these architectures are able to better capture the evolution of
visual patterns over time, which has a boosting effect on the classification perfor-
mance. The full potential of these models is best demonstrated using simulated
datasets whereby we have control over the exact nature of the temporal patterns
and the image labels are perfectly known. In real radiological datasets, there are
often errors in some of the image labels due to typographical errors, interpretive
errors, ambiguous language and, in some cases, long-standing findings not being
mentioned. This can cause problems both in CNN training and testing. Despite
these challenges, we have demonstrated that improved classification results can
also be achieved by the time-modulated LSTM components on a large chest
x-ray dataset. Thus we empirically proved that a patient’s imaging history can
be used to improve automated radiological reporting. In future work, we plan
more extensive testing of a system trained end-to-end on a much larger number
of radiological classes. The code with the networks used for our experiment can
be found online: https://github.com/WMGDataScience/tLSTM.
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