
Automatic Myocardial Strain Imaging in
Echocardiography Using Deep Learning

Andreas Østvik1,2,3(B), Erik Smistad1,2,3, Torvald Espeland1,2,4,
Erik Andreas Rye Berg1,2,4, and Lasse Lovstakken1,2

1 Centre for Innovative Ultrasound Solutions, NTNU, Trondheim, Norway
andreas.ostvik@ntnu.no

2 Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
3 Department of Health, SINTEF Digital, Trondheim, Norway
4 Clinic of Cardiology, St. Olavs Hospital, Trondheim, Norway

Abstract. Recent studies in the field of deep learning suggest that
motion estimation can be treated as a learnable problem. In this paper we
propose a pipeline for functional imaging in echocardiography consisting
of four central components, (i) classification of cardiac view, (ii) semantic
partitioning of the left ventricle (LV) myocardium, (iii) regional motion
estimates and (iv) fusion of measurements. A U-Net type of convolutional
neural network (CNN) was developed to classify muscle tissue, and par-
titioned into a semantic measurement kernel based on LV length and
ventricular orientation. Dense tissue motion was predicted using stacked
U-Net architectures with image warping of intermediate flow, designed
to tackle variable displacements. Training was performed on a mixture
of real and synthetic data. The resulting segmentation and motion esti-
mates was fused in a Kalman filter and used as basis for measuring global
longitudinal strain. For reference, 2D ultrasound images from 21 subjects
were acquired using a GE Vivid system. Data was analyzed by two spe-
cialists using a semi-automatic tool for longitudinal function estimates
in a commercial system, and further compared to output of the proposed
method. Qualitative assessment showed comparable deformation trends
as the clinical analysis software. The average deviation for the global
longitudinal strain was (−0.6± 1.6)% for apical four-chamber view. The
system was implemented with Tensorflow, and working in an end-to-end
fashion without any ad-hoc tuning. Using a modern graphics processing
unit, the average inference time is estimated to (115 ± 3) ms per frame.
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1 Introduction

Recent years have shown that quantitative assessment of cardiac function has
become indispensable in echocardiography. Evaluation of the hearts contractile
apparatus has traditionally been limited to geometric measures such as ejection
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fraction (EF) and visual estimation (eyeballing) of myocardial morphophysiol-
ogy [3]. Despite being a central part of standard protocol examinations at the
outpatient clinic, the methods tend to have poor inter- and intravariability. With
tissue doppler imaging (TDI) and speckle tracking(ST), the quantification tools
have moved beyond these measures, and enabled new methods for assessing
the myocardial deformation pattern [12]. Myocardial deformation imaging, e.g.
strain and strain rate, derived from TDI and ST, have high sensitivity, and can
allow an earlier detection of cardiac dysfunction. However, these methods also
have several limitations. For instance, TDI is dependent on insonation angle, i.e.
measurements are along the ultrasound beam. A poor parallel alignment with
the myocardium can thus influence the results. Speckle tracking is less angle
dependant (typically dependant on the lateral resolution), but has suffered from
poor temporal resolution and ad-hoc setups. Recent work in the field of deep
learning (DL) suggest that motion estimation can be treated as a learnable prob-
lem [7]. Herein, we investigate this approach in combination with cardiac view
classification and segmentation to achieve fully automatic functional imaging.

1.1 Relevant Work and Perspective

Automatic view classification and segmentation of relevant cardiac structures
in echocardiography has been a topic of great interest and research [2,9]. For
segmentation, work has mainly been conducted on 3D echocardiography, but
2D approaches are also proposed [13]. To the authors’ knowledge, no published
study have utilized motion estimation from deep learning in echocardiography.
These methods claim to be more robust in terms of noise and small displace-
ments [7] than traditional optical flow methods, thus appealing for ultrasound
and myocardial motion estimation. Combining the components could potentially
allow fast and fully automated pipelines for calculating clinically relevant param-
eters, with feasibility of on-site analysis. In this study, the goal is to address this,
and measure the global longitudinal strain (GLS) from the four-chamber view
in an end-to-end fashion.

Variability of global longitudinal strain has been discussed in several papers.
Recently, a head-to-head comparison between speckle tracking based GLS mea-
surements of nine commercial vendors [5] was conducted. Results show that the
reproducibility compared to other clinical measurements such as EF is good, but
the intervendor variation is significant. The same expert obtaining GLS in the
apical four-chamber view of 63 patients on nine different systems, gave average
results in the range of −17.9% to −21.4%. The commercial system used as ref-
erence in this study had an offset of −1.7%, i.e. overestimating, from the mean
measurement. The inter- and intraobserver relative mean error was 7.8% and
8.3% respectively.

2 Method

Our proposed pipeline is comprised of four steps, (i) classification of cardiac view,
(ii) segmentation of the left ventricle (LV) myocardium, (iii) regional motion esti-
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mates and (iv) fusion of measurements. An illustration of the system after view
classification is illustrated in Fig. 1. Step (i)–(iii) utilizes convolutional neural
networks (CNNs), while the last step uses a traditional Kalman filter method.

Fig. 1. Visualization of the measurement pipeline. US images are forwarded through
a segmentation network, and the resulting masks are used to extract the centerline
and relevant parts of the image. The masked US data is further processed through the
motion estimation network yielding a map of velocities. The centerline position and
velocities of the myocard are used in the measurement update step of a Kalman filter.
The updated results are used as a basis for strain measurements.

2.1 Cardiac View Classification

The view classification is the first essential step in the automatic pipeline, and is
used to quality assure and sort incoming data. We employ a feed-forward CNN
composed of inception blocks and a dense connectivity pattern [6,14]. Initially,
input is propagated through two component blocks with (3 × 3) convolution
kernels followed by max pooling. The first and second convolution layer has
16 and 32 filters respectively. We use pooling with size (2 × 2) and equal
strides. After the second pooling layer, data is processed through an inception
module with three parallel routes. Each route consist of a bottleneck, two of
which were followed by blocks with larger convolution kernels, i.e. (3 × 3) and
(5 × 5) respectively. The input of the inception module is concatenated with the
output and processed into a transition module with bottleneck and max pooling.
This step is repeated three times, and we double the amount of filters before
every new pooling layer. The dense connectivity pattern alleviates the vanishing
gradient problem, and can enhance feature propagation and reusability. After



312 A. Østvik et al.

the third transition, the data is processed through two inception blocks with
constant amount of filters and no pooling. The route with (5 × 5) convolution
kernels is omitted in these modules, and dropout regularization was used between
them. The final classification block consists of a compressing convolution layer
with (1 × 1) kernels and number of filters equal to the class count. This is
activated with another PReLU, before features are spatially averaged and fed
into a softmax activation.

Training is performed from scratch with Adam optimizer and categorical
cross entropy loss, with input size of (128×128) greyscale. A total of eight classes
were used for training, the apical four chamber, two chamber and long-axis, the
parasternal long- and short-axis, subcostal four-chamber and vena cava inferior,
as well as a class for unknown data. The final network classifies the different
cardiac views, and if applicable, i.e. high confidence of apical four-chamber, the
image is processed into the remaining processing chain.

2.2 Semantic Partitioning of the Myocardium

The second step is segmentation of the left ventricle myocardium. A standard
U-Net type of CNN [11] is utilized. The architecture consist of a downsampling,
and an upsampling part of five levels with concatenating cross-over connection
between equally sized feature maps. Each level has two convolution layers with
the same amount of filters ranging from 32 to 128 from top to bottom respec-
tively. All filters have a size of (3 × 3). Max pooling with size (2 × 2) and equal
strides was used for downsampling and nearest neighbour for upsampling. Train-
ing was performed with Adam optimizer and Dice loss, and the size of the input
image was set to (256 × 256) greyscale. The output of the network is a segmen-
tation mask Ω.

The segmentation is used a basis for two different tasks, masking the input
of the motion estimation network Im and centerline extraction. We mask the US
image I to remove redundant input signal. The contour of the segmentation Ω
was used to define the endo- and epicardial borders, and further the centerline
C = {(x, y)1, ..., (x, y)N} was sampled between with N = 120 equally spaced
points along the myocard. The latter is passed to the Kalman filter.

2.3 Motion Estimation Using Deep Learning

The motion estimation is based on the work done by Ilg et al. [7], and the net-
works referred to as FlowNets. The design involves stacking of multiple U-Net
architectures with image warping of intermediate flow and propagation of bright-
ness error. Two parallel routes are created to tackle large and small displacements
separately. The prior is solved by stacking three U-Net architectures, the first
which includes explicit correlation of feature maps, while the two succeeding are
standard U-Net architectures without custom layers. For small displacement,
only one U-Net is used, but compared to the networks for large displacements,
the kernel size and stride of the first layer is reduced. At the end, the two routes
are fused together with a simple CNN. The networks are trained separately, in
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a schedule consisting of different synthetic datasets with a wide range of motion
vector representations. The small displacement network is fine-tuned on a dataset
modified for subpixel motion. Adam optimizer and endpoint error loss is used
while training for all the networks. The input size of the network was kept the
same as the original implementation, i.e. (512 × 384).

The output prediction of the network is dense tissue motion vectors in the
masked US area. The centerline C of the current segmentation is used to extract
the corresponding set of motion vectors M = {(vx, vy)1, ..., (vx, vy)N}.

2.4 Fusion of Measurements

Fusion of measurements was performed employing an ordinary Kalman fil-
ter with a constant acceleration model [8] with measurement input zk =
[x, y, vx, vy]Tk for every point-velocity component k ∈ {C,M}. Essentially, this
serves as a simple method for incorporating the temporal domain, which is nat-
ural in the context of echocardiography. It adds temporal smoothing, reducing
potential pierce noise detectable in image-to-image measurements. The updated
centerline C′ ⊆ Ω is used to calculate the longitudinal ventricular length ι, i.e.
the arc length, for each timestep t. Further, this is used to estimate the global
longitudinal strain ε(t) = (ι(t) − ι0)/ι0 along the center of the myocard.

3 Datasets for Training and Validation

Anonymous echocardiography data for training the view classification and seg-
mentation models was acquired from various patient studies with Research
Ethics Board (REB) approval. The echocardiography data used are obtained
at various outpatient clinics with a GE Vivid E9/95 ultrasound system (GE
Vingmed Ultrasound, Horten, Norway), and consist of data from over 250
patients. The health status of subjects is unknown, but representative for a
standard outpatient clinic. The data includes manual expert annotation of views,
and the epi- and endocard borders of the left ventricle. The view classification
and segmentation networks are trained separately on this data, with a signif-
icant fraction left out for testing. The motion estimation network was trained
on three synthetic datasets, namely FlyingChairs [4], FlyingThings3D [10] and
ChairsSDHom [7]. Disregarding the fundamentals of motion, the datasets have
no resemblance to echocardiography. However, they can be modified to have
representations covering both sub- and superpixel motion, which is necessary to
reproduce motion from the whole cardiac cycle.

For validation of GLS, 21 subjects called for evaluation of cardiac disease in
two clinical studies were included. Both are REB approved, and informed consent
was given. Two specialists in cardiology performed standard strain measurements
using a semi-automatic method implemented in GE EchoPAC1. The method
uses speckle tracking to estimate myocardial deformation, but the methodology
is unknown. The results were used as a reference for evaluating the implemented
pipeline.
1

http://www3.gehealthcare.com/en/products/categories/ultrasound/vivid/echopac.

http://www3.gehealthcare.com/en/products/categories/ultrasound/vivid/echopac
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4 Results

GLS was obtained successfully in all patients. The results for apical four-chamber
views are displayed in Fig. 2, together with the GLS curves of the average and
worst case subjects. The average deviation of the systolic GLS between the two
methods was (−0.6±1.6)%. The average strain on all subjects was (−17.9±2.3)%
and (−17.3 ± 2.5)%, for the reference and proposed method respectively.

Fig. 2. Bland-Altman plot of global longitudinal strain from all subjects. The estimated
GLS traces of the average and worst case, together with the corresponding reference,
are displayed to the right.

The view classification achieved an image-wise F1 score of 97.9% on four-chamber
data of 260 patients, and the segmentation a dice score of (0.87 ± 0.03) on 50
patients, all unknown and independent from the training set. The system was
implemented as a Tensorflow dataflow graph [1], enabling easy deployment and
optimized inference. Using a modern laptop with a Nvidia GTX 1070 GPU, the
average inference time was estimated to (115 ± 1) ms per frame, where flow
prediction accounts for approximately 70% of the runtime.

5 Discussion

Compared to reference, the measurements from the proposed pipeline were
slightly underestimated. The reference method is not a gold standard for GLS
and might not necessarily yield correct results for all cases. Speckle tracking can
fail where noise hampers the echogenicity. We could identify poor tracking in the
apical area due to noise for some subjects, and this would in turn result in larger
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strain. Further, the vendor comparison study [5] shows that the commercial sys-
tem used in this study on average overestimates the mean of all vendors by 1.7%.
This in mind, we note that the results from the current implementations are in
the expected range. For individual cases, the deformation have overlapping and
synchronized trends, as is prevalent from Fig. 2.

The proposed pipeline involves several sources of error, especially the segmen-
tation and motion networks being the fundamental building blocks of the mea-
surements. Using the segmentation mask to remove redundant signal in the US
image seems feasible and useful for removing some noise in the motion network.
However, it is not essential when measuring the components of the centerline,
as they are far from the borders of the myocard, where the effect is noticable.

Future work will include the addition of multiple views, e.g. apical two- and
long-axis, allowing average GLS. This is considered a more robust metric, less
prone to regional noise. Also, fusion of models are currently naive, and we expect
results to improve inducing models with more relevance to cardiac motion. The
same holds for the motion estimation, i.e. the network could benefit from train-
ing on more relevant data. Further, we wish to do this for regional strain mea-
surements. For clinical validation, we need to systematically include the subject
condition and a larger test material.

6 Conclusion

In this paper we present a novel pipeline for functional assessment of cardiac
function using deep learning. We show that motion estimation with convolutional
neural networks is generic, and applicable in echocardiography, despite training
on synthetic data. Together with cardiac view classification and myocard seg-
mentation, this is incorporated in an automatic pipeline for calculating global
longitudinal strain. Results coincide well with relevant work. The methods and
validation are still at a preliminary stage in terms of clinical use, and some
limitations and future work are briefly mentioned.
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5. Farsalinos, K.E., Daraban, A.M., Ünlü, S., Thomas, J.D., Badano, L.P., Voigt,
J.U.: Head-to-head comparison of global longitudinal strain measurements among
nine different vendors: the EACVI/ASE inter-vendor comparison study. J. Am.
Soc. Echocardiogr. 28(10), 1171–1181 (2015)

6. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2017)

7. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet
2.0: evolution of optical flow estimation with deep networks. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017. http://lmb.
informatik.uni-freiburg.de//Publications/2017/IMKDB17

8. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic
Eng. 82(1), 35–45 (1960)

9. Madani, A., Arnaout, R., Mofrad, M., Arnaout, R.: Fast and accurate view classi-
fication of echocardiograms using deep learning. npj Digit. Med. 1(1), 6 (2018)

10. Mayer, N., et al.: A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4040–4048 (2016)

11. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

12. Smiseth, O.A., Torp, H., Opdahl, A., Haugaa, K.H., Urheim, S.: Myocardial strain
imaging: how useful is it in clinical decision making? Eur. Heart J. 37(15), 1196–
1207 (2016). https://doi.org/10.1093/eurheartj/ehv529

13. Smistad, E., Østvik, A., Haugen, B.O., Lovstakken, L.: 2D left ventricle segmen-
tation using deep learning. In: 2017 IEEE International Ultrasonics Symposium
(IUS), pp. 1–4. IEEE (2017)

14. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

http://lmb.informatik.uni-freiburg.de//Publications/2017/IMKDB17
http://lmb.informatik.uni-freiburg.de//Publications/2017/IMKDB17
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1093/eurheartj/ehv529

	Automatic Myocardial Strain Imaging in Echocardiography Using Deep Learning
	1 Introduction
	1.1 Relevant Work and Perspective

	2 Method
	2.1 Cardiac View Classification
	2.2 Semantic Partitioning of the Myocardium
	2.3 Motion Estimation Using Deep Learning
	2.4 Fusion of Measurements

	3 Datasets for Training and Validation
	4 Results
	5 Discussion
	6 Conclusion
	References




