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Abstract. In this study we tackle the problem of detecting subtle
epilepsy lesions in multiparametric (T1w, FLAIR) MR images consid-
ered as normal during a visual examination by a neurologist (MRI neg-
ative). We cast this problem as an outlier detection problem and adapt
the framework proposed in [1]. It consists in learning a oc-SVM model for
each voxel in the brain volume. We generalize this approach by propos-
ing unsupervised deep architectures as feature extracting mechanisms
in order to learn representations characterizing healthy subjects. We
hypothesize that such architectures may capture features that allow to
distinguish pathological voxels from the normal cases used in the train-
ing. As such, we exploit and compare three architectures, a novel con-
figuration of siamese networks, stacked convolutional autoencoders and
Wasserstein autoencoders. The models are trained on 75 healthy subjects
and validated on 21 patients (with 18 MRI negatives) with confirmed
epilepsy lesions achieving the best sensitivity of 62%.
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1 Introduction

Computer aided diagnosis (CAD) systems assist clinicians in various tasks such
as organ or lesion segmentation, detection of abnormal regions in a medical
image, etc. The vast majority of the existing CAD systems are built upon meth-
ods developed in supervised settings, using either manually designed features
or currently ubiquitous deep learning architectures. However, when the number
of labeled pathological cases in the training set is not sufficient to account for
the complexity of the task, supervised learning becomes infeasible. To bypass
the problem of insufficient labeled data, some authors formulate lesion detection
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tasks in semi-supervised settings, by accounting for both labeled and unlabeled
data in a deep architecture for MS lesion segmentation [2] or by exploiting weak
labels (the number of lesions in a scan) to detect enlarged perivascular spaces in
the basal ganglia [3].
Another recent tendency goes even further and casts lesion detection problem
as an anomaly detection task. Anomaly detection, also referred to as outlier
detection, consists in learning the boundary of the normal class in order to
later identify the observations that lay outside of it. Over the recent years the
challenging topic of outlier detection has been studied extensively and many
algorithms have been proposed for outlier detection depending on the nature
of the data and the type of anomalies [4]. In computer vision, recent works
investigated approaches based on deep architectures such as autoencoders or
Generative Adverserial Networks (GANs) coupled with various outlier detection
algorithms [5]. In the medical imaging domain, [6,7] proposed a model defin-
ing a score function that measures how anomalous a given sample is based on
the reconstruction and discrimination losses estimated by a GAN architecture
trained on normal samples only. In [8,9], a latent representation of normal sam-
ples is first learned with deep unsupervised networks and then fed to a one-class
support vector machine (oc-SVM) model to estimate the boundaries of the nor-
mal examples.
In this work we build on the framework proposed in [9] for the challenging appli-
cation of epilepsy lesion detection in patients with MRI negative exams, meaning
that the lesions were not visually identified by clinicians on the MR scans [10].
We propose to exploit three unsupervised deep learning architectures as feature
extracting mechanisms in the outlier detection context. We consider stacked
convolutional autoencoders, a novel configuration of siamese networks [9] and
Wasserstein autoencoders [11] that have been shown to combine the advantages
of both standard generative adversarial networks (GAN) and variational autoen-
coders (VAE) in generating synthetic natural images without compromising the
stability of the training. We couple these architectures with voxel-level oc-SVM
models and compare their performances on the epilepsy lesion detection task.

2 Method

2.1 Unsupervised Feature Extraction with Autoencoders

The first step of the proposed system is to learn patch-level representations of
healthy subjects by exploiting the three types of architectures below.

Stacked Convolutional Autoencoders (sCAE) are a variation of autoen-
coders that first map the input x ∈ X to a latent representation space Z
through a series of convolutional and max-pooling operations (encoder E) and
later map it back to the original input space with a series of de-convolutions
and up-poolings by producing a reconstruction x̃ of the input (decoder G). The
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Fig. 1. Left: Siamese neural network composed of stacked convolutional autoencoders
as sub-networks (sCAE). The input consists of a pair of patches (x1, x2) of 2 different
subjects centered at the same voxel in the brain. The encoder E maps x to the latent
representation z while the decoder G maps it back to the input space producing a
reconstruction x̃. Right: Wasserstein autoencoder (WAE) composed of an encoder E,
a decoder G and an adversary discriminator D.

parameters are iteratively updated to minimize the deviation between the out-
put x̃ and the input x. A sCAE is illustrated on Fig. 1 as the top sub-network
of the architecture on the left.

Regularized Siamese Autoencoders (rSN), as proposed in [9], consist of two
identical (same architecture, shared parameters) stacked convolutional autoen-
coders with K hidden layers and a cost module (shown on Fig. 1). The siamese
network receives a pair of patches (x1,x2) at input, then each patch is prop-
agated through the corresponding subnetwork yielding representations (z1, z2)
respectively in the middle layer which are then passed to the loss function 1
below. The network is trained to maximize the cosine similarity of the represen-
tations of patches centered at the same voxel and belonging to different healthy
subjects, at the same time imposing the subnetworks to produce reconstructions
close to the original input. The loss function for a single pair hence is:

LrSN (x1,x2;ΘrSN ) =
2∑

t=1

||xt − x̃t||22 − α · cos(z1, z2) (1)

where x̃t is the reconstructed output of the patch xt produced by sub-network t
while zt is its (vectorized) representation in the middle layer and α is a coefficient
that controls the tradeoff between the two terms. ΘrSN denotes the parameter
set.

Wasserstein Autoencoders (WAE) have been recently introduced as genera-
tive models combining the best properties of Wasserstein GANs and Variational
Autoencoders [12]. As shown on Fig. 1, a Wasserstein auto-encoder consists of
three components: an encoder E mapping an input patch from the data space
X to the latent space Z, a decoder G mapping a latent code from the latent
space Z to the data space X , and an adversary network D that tries to distin-
guish the prior distribution of the latent code PZ from the latent distribution
QZ produced by the encoder. The resulting loss function can be expressed as
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LWAE(X;ΘWAE) =
1
N

N∑

i=1

c(xi, x̃i) + λ · DZ(Pz, Qz) (2)

where DZ measures the discrepancy between a given distribution Pz and Qz

for the dataset X = {xi}1,..,N and c measures the reconstruction error. λ is a
coefficient that controls the tradeoff between the two terms and ΘWAE denotes
the parameter set. The generic form of the WAE loss allows different reconstruc-
tion error functions and regularizers. We used the standard reconstruction error
c(xi, x̃i) = ||x − x̃i||22 and the Jenssen-Shanon divergence as DZ .

2.2 Voxel-Level Outlier Detection with Oc-SVM Classifiers

A oc-SVM classifier [13] is an outlier detection method that seeks to find
the optimal hyperplane that separates the given points from the origin in a dot
product space defined by some kernel function φ. The latent representations
z learnt by each of the networks proposed above was used to train oc-SVM
classifiers at voxel level. For a given voxel vi, the associated oc-SVM model
Ci is trained on the matrix Mi = [zi1, ..., zin] where zij is the feature vector
corresponding to the patch centered at vi of subject j and n is the number of
subjects. For a new patient, each voxel vi is matched against the corresponding
model Ci and is assigned the signed score output by Ci. This yields a distance
map Dp for the given patient. This map is later normalized by the estimated
voxel-level standard deviation (computed on the healthy subjects with 1-fold
evaluation). We keep the most negative scores up to the score corresponding to
a pre-chosen p-value in the patient’s distance score distribution and apply a 26-
connectivity rule to identify connected components which we refer to as clusters
(and the map - cluster map). The clusters are what we refer to as detections by
the proposed method. The clusters are then ranked according to the size and the
average score of their voxels. Such ranking favors large clusters with the most
negative average score. Finally, we keep the top n detections and discard the
rest. When a cluster overlaps significantly with the ground truth of a patient we
consider it a true positive and false positive otherwise.

3 Experiments and Results

3.1 Dataset Description and Pre-processing

The study was approved by our institutional review board with approval num-
bers 2012-A00516-37 and 2014-019 B and a written consent was obtained for all
participants.
Our database consists MR images (T1-weighted and FLAIR) of 75 healthy sub-
jects and 21 patients acquired on a 1.5T Sonata scanner (Siemens Healthcare,
Erlangen, Germany). All the volumes were normalized to the standard brain
template of the Montreal Neurological Institute (MNI) [14] using a voxel size
of 1× 1 × 1 mm with the unified segmentation algorithm [15] implemented in
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SPM12 also correcting for magnetic field inhomogeneities. This spatial normal-
ization assures a voxel-level correspondence between the subjects. We removed
top 1% intensities and scaled the images between 0 and 1 at image level before
feeding the patches to the networks.
The method has been validated on 21 patients admitted to our clinical center
with confirmed medically intractable epileptogenic lesions: 2 of them were visu-
ally detected on the FLAIR images and only 1 lesion was identified on both
T1w and FLAIR scans. The remaining 18 patients are confirmed MRI negative
patients. The MRI negative patients had surgeries and have been seizure-free
since. The ground truth annotations used in the performance evaluation were
obtained by outlining the visible zones of the MRI positive patients and by com-
bining the information of post-surgical MR images and the resected zones for
MRI negative patients.

3.2 Feature Extraction with sCAE, rSN and WAE

As shown on Fig. 1, the three architectures consist of the same encoder E and
decoder G (the stacked convolutional autoencoder is identical to the upper sub-
network of the siamese network). The architecture details are shown on Fig. 2a.
The encoder E takes as input an 18× 18 × 2 patch (the third dimension corre-
sponds to the two modalities-T1 and FLAIR) and outputs a latent representation
z of dimension 64. LeakyReLU was used as activation in the WAE discriminator
with scale 0.02 for negative input values. ReLU was used in the generator and
the encoder (except for the last layer of G where sigmoid is applied). We varied
the λ parameter values in loss 2 among 1, 5, 10, 20 and 100.
All the three networks were trained on the same data set of patches extracted
from healthy subjects’ images with a stride 8. In the case of the siamese network,
each patch of a subject was randomly matched with a ‘similar pair’ among the
remaining subjects. The α parameter in the loss 1 is set to 0 during the first 10
epochs, then grows linearly for 15 epochs until it reaches 0.5 and then plateaus
for 5 more epochs. The Adam optimizer was used with the learning rate set to
0.001 with a training batch size of 128.

3.3 oc-SVM Classifier Design

We used oc-SVM classifiers with RBF kernel by setting the kernel width γ for
each voxel vi individually to the estimated median of the standardized euclidean
pairwise distances of the corresponding matrix Mi (see Sect. 2.2) as in [16]. The
allowed fraction of outliers for all models was set to 0.03 (this parameter does
not impact the results).

3.4 Results and Discussion

Below we evaluate the performance of the system on 21 patients with confirmed
epilepsy lesions. Figure 2b shows the performance obtained with each of the
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architectures: the y-axis shows the detection rate among the top n clusters,
ranked according to their average score and size. The rSN features seem to out-
perform the features learnt with WAE and sCAE, WAE performing better than
sCAE for certain values of λ (λ = 1 and λ = 100 did not yield a good perfor-
mance). The latter confirms our hypothesis that the reconstruction error, when
enhanced with a regularization, fits better to the anomaly detection context.
The WAE performance is still inferior to that of rSN which might be due to a
limitation of the model itself or the experimental choice of the hyper-parameters
(we can see how the performance is affected by the choice of λ; the value 20 is
less successful, probably since it prioritizes too much the adversarial term; the
value 100 entirely degraded the results and, hence, is not shown). Figure 3 shows
the output of the system with the considered architectures. The patient has a
visible lesion outlined in green. The detection quality varies, especially WAE
with λ = 20 almost misses the lesion.

Fig. 2. (a) The encoder, decoder and discriminator architectures respectively.
Red/green/violet boxes denote convolutional/deconvolutional/fully connected layers
respectively. Orange/yellow boxes stand for maxpooling/uppooling. (b) The perfor-
mance of the CAD system with sCAE, WAE and rSN features. x-axis: Top n clusters,
y-axis: Detection rate among the top n clusters. Ranking based on average score and
size. (Color figure online)

Unlike most recent studies that focus on a single epilepsy type (FCD) and use
handcrafted features characterizing it [1,17–20], our method seeks to find more
complex features in an unsupervised manner in order to identify lesions with
rather unknown signatures. Naturally, such an approach, when applied to a
specific pathology, is likely to produce more false positive detections. Although
a fair comparison with the published results is difficult because of the differences
in the patient groups, the obtained results (62% sensitivity for 9 false positives
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Fig. 3. CAD output for a MRI positive patient with sCAE, WAE λ = 5, WAE λ = 10,
WAE λ = 20 and rSN features respectively. The images show the maximum intensity
projections of the cluster maps onto an MRI transverse slice (ground truth is outlined
in green circles). The maps show the top 6, 2, 2, 6 and 3 clusters, respectively. (Color
figure online)

per scan for rSN features and between 52–58% for WAE and sCAE) are of the
same order as those reported in recent studies for the difficult task of automated
epilepsy detection in MRI negative patients ([17] reports a detection rate of
70% when individual SBM-based features are used; the results vary between 60
and 70% when considering combinations of some of these SBM features). MRI
positive lesions are detected quite soon (usually among top 2–4 clusters) which
is due to the fact that such lesions have visible markers that allow to distinguish
them easily unlike the MRI negative patients whose lesions may be detected
along with other outliers of similar ‘suspiciousness’. Finally, the method with all
the networks is quite straightforward to implement and to apply in daily practice
as the output of the system can be obtained under a couple of minutes.
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