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Abstract. Recently proposed techniques for semi-supervised learning
such as Temporal Ensembling and Mean Teacher have achieved state-
of-the-art results in many important classification benchmarks. In this
work, we expand the Mean Teacher approach to segmentation tasks and
show that it can bring important improvements in a realistic small data
regime using a publicly available multi-center dataset from the Magnetic
Resonance Imaging (MRI) domain. We also devise a method to solve the
problems that arise when using traditional data augmentation strategies
for segmentation tasks on our new training scheme.

1 Introduction

In the past few years, we witnessed a large growth in the development of Deep
Learning techniques, that surpassed human-level performance on some impor-
tant tasks [1], including health domain applications [2]. A recent survey [3] that
examined more than 300 papers using Deep Learning techniques in medical
imaging analysis, made it clear that Deep Learning is now pervasive across the
entire field. In [3], they also found that Convolutional Neural Networks (CNNs)
were more prevalent in the medical imaging analysis, with end-to-end trained
CNNs becoming the preferred approach.

It is also evident that Deep Learning poses unique challenges, such as the
large amount of data requirement, which can be partially mitigated by using
transfer learning [4] or domain adaptation approaches [5], especially in the nat-
ural imaging domain. However, in medical imaging domain, not only the image
acquisition is expensive but also data annotations, that usually requires a very
time-consuming dedication of experts. Besides that, other challenges are still
present in the medical imaging field, such as privacy and regulations/ethical
concerns, which are also an important factor impacting the data availability.

According to [3], in certain domains, the main challenge is usually not the
availability of the image data itself, but the lack of relevant annotations/labeling
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for these images. Traditionally, systems like Picture Archiving and Communi-
cation System (PACS) [3], used in the routine of most western hospitals, store
free-text reports, and turning this textual information into accurate or struc-
tured labels can be quite challenging. Therefore, the development of techniques
that could take advantage of the vast amount of unlabeled data is paramount
for advancing the current state of practical applications in medical imaging.

Semi-supervised learning is a class of learning algorithms that can take lever-
age not only of labeled samples but also from unlabeled samples. Semi-supervised
learning is halfway between supervised learning and unsupervised learning [6],
where the algorithm uses limited supervision, usually only from a few samples
of a dataset together with a larger amount of unlabeled data.

In this work, we propose a simple deep semi-supervised learning approach
for segmentation that can be efficiently implemented. Our technique is robust
enough to be incorporated in most traditional segmentation architectures since it
decouples the semi-supervised training from the architectural choices. We show
experimentally on a public Magnetic Resonance Imaging (MRI) dataset that
this technique can take advantage of unlabeled data and provide improvements
even in a realistic scenario of small data regime, a common reality in medical
imaging.

2 Semi-supervised Segmentation Using Mean Teacher

Given that the classification cost for unlabeled samples is undefined in supervised
learning, adding unlabeled samples into the training procedure can be quite
challenging. Traditionally, there is a dataset X = (xi)i∈[n] that can be divided
into two disjoint sets: the samples Xl = (x1, . . . , xl) that contains the labels
Yl = (y1, . . . , yl), and the samples Xu = (xl+1, . . . , xl+u) where the labels are
unknown. However, if the knowledge available in p(x) that we can get from the
unlabeled data also contains information that is useful for the inference problem
of p(y|x), then it is evident that semi-supervised learning can improve upon
supervised learning [6].

Many techniques were developed in the past for semi-supervised learning,
usually creating surrogate classes as in [7], adding entropy regularization as in
[8] or using Generative Adversarial Networks (GANs) [9]. More recently, other
ideas also led to the development of techniques that added perturbations and
extra reconstruction costs in the intermediate representations [10] of the network,
yielding excellent results. A very successful method called Temporal Ensembling
[11] was also recently introduced, where the authors explored the idea of a tem-
poral ensembling network for semi-supervised learning where the predictions
of multiple previous network evaluations were aggregated using an exponential
moving average (EMA) with a penalization term for the predictions that were
inconsistent with this target, achieving state-of-the-art results in several semi-
supervised learning benchmarks.

In [12], the authors expanded the Temporal Ensembling method by averag-
ing the model weights instead of the label predictions by using Polyak averaging
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[13]. The method described in [12] is a student/teacher model, where the stu-
dent model architecture is replicated into the teacher model, which in turn, get
its weights updated as the exponential moving average of the student weights
according to:

θ′
t = αθ′

t−1 + (1 − α)θt (1)

where α is a smoothing hyperparameter, t is the training step and θ are the model
weights. The goal of the student is to learn through a composite loss function
with two terms: one for the traditional classification loss and another to enforce
the consistency of its predictions with the teacher model. Both the student and
teacher models evaluate the input data by applying noise that can come from
Dropout, random affine transformations, added Gaussian noise, among others.

In this work, we extend the mean teacher technique [12] to semi-supervised
segmentation. To the best of our knowledge, this is the first time that this semi-
supervised method was extended for segmentation tasks. Our changes to extend
the mean teacher [12] technique for segmentation are simple: we use different
loss functions both for the task and consistency and also propose a new method
for solving the augmentation issues that arises from this technique when used for
segmentation. For the consistency loss, we use a pixel-wise binary cross-entropy,
formulated as

C(θ) = Ex∈X [−y log(p) + (1 − y) log(1 − p)] , (2)

where p ∈ [0, 1] is the output (after sigmoid activation) of the student model
f(x; θ) and y ∈ [0, 1] is the output prediction for the same sample from the
teacher model f(x; θ′), where θ and θ′ are student and teacher model param-
eters respectively. The consistency loss can be seen as a pixel-wise knowledge
distillation [14] from the teacher model. It is important to note that both labeled
samples from Xl and unlabeled samples from Xu contribute for the consistency
loss C(θ) calculation. We used binary cross-entropy, instead of the mean squared
error (MSE) used by [12] because the binary cross-entropy provided an improved
model performance for the segmentation task. We also experimented with con-
fidence thresholding as in [15] on the teacher predictions, however, it didn’t
improve the results.

For the segmentation task, we employed a surrogate loss for the Dice
Similarity Coefficient, called the Dice loss, which is insensitive to imbalance and
was also employed by [16] on the same segmentation task domain we experiment
in this paper. The Dice Loss, computed per mini-batch, is formulated as

L(θ) = − 2
∑

i piyi∑
i pi +

∑
i yi

, (3)

where pi ∈ [0, 1] is the ith output (after sigmoid non-linearity) and yi ∈ {0, 1} is
the corresponding ground truth. For the segmentation loss, only labeled samples
from Xl contribute for the L(θ) calculation. As in [12], the total loss used is the
weighted sum of both segmentation and consistency losses. An overview detailing
the components of the method can be seen in the Fig. 1, while a description of
the training algorithm is described in the Algorithm1.
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Fig. 1. An overview with the components of the proposed method based on the mean
teacher technique. (1) A data augmentation procedure g(x; φ) is used to perturb the
input data (in our case, a MRI axial slice), where φ is the data augmentation param-
eter (i.e. N (0, φ) for a Gaussian noise), note that different augmentation parameters
are used for student and teacher models. (2) The student model. (3) The teacher
model that is updated with an exponential moving average (EMA) from the student
weights. (4) The consistency loss used to train the student model. This consistency
will enforce the consistency between student predictions on both labeled and unlabelled
data according to the teacher predictions. (5) The traditional segmentation loss, where
the supervision signal is provided to the student model for the labeled samples.

2.1 Segmentation Data Augmentation

In segmentation tasks, data augmentation is very important, especially in the
medical imaging domain where data availability is limited, variability is high and
translational equivariance is desirable. Traditional augmentation methods such
as affine transformations (rotation, translation, etc.) that change the spatial con-
tent of the input data, as opposed to pixel-wise additive noise, for example, are
also applied with the exact same parameters on the label to spatially align input
and ground truth, both subject to a pixel-wise loss. This methodology, however,
is unfeasible in the mean teacher training scheme. If two different augmentations
(one for the student and another for the teacher) causes spatial misalignment, the
spatial content between student and teacher predictions will not match during
the pixel-wise consistency loss.

To avoid the misalignment during the consistency loss, such transformations
can be applied with the same parametrization both to the student and teacher
model inputs. However, this wouldn’t take advantage of the stronger invariance
to transformations that can be introduced through the consistency loss. For that
reason, we developed a solution that applies the transformations in the teacher in
a delayed fashion. Our proposed method is based on the application of the same
augmentation procedure g(x;φ) before the model forward pass only for the stu-
dent model, and then after model forward pass in the teacher model predictions,
making thus both prediction maps aligned for the consistency loss evaluation,
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Algorithm 1. Semi-supervised segmentation algorithm.
Require: xi = training samples

Require: yi = labels for the labeled inputs i ∈ Yl

Require: t = global step (initialized with zero)

Require: w(t) = consistency weight ramp-up function

Require: fθ(·) = neural network model with parameters θ

Require: gφ(·) = stochastic input augmentation procedure with parameters φ

for k in [1, num epochs] do

for each minibatch B do

zi∈B ← fθ(gφ(xi∈B)) � evaluate augmented inputs with student model

z̃i∈B ← fθ′ (gφ′ (xi∈B)) � teacher model evaluation w/ different perturbations

loss ← L(z, y) + w(t) 1
|B|

∑
i∈B C(zi, z̃i) � supervised and unsupervised loss components

update θ using, e.g., Adam � update student model parameters

t ← t + 1 � increment the global step counter

θ′
t ← αθ′

t−1 + (1 − α)θt � update teacher model parameters with using EMA

end for

end for

while still taking leverage of introducing a much stronger invariance to the aug-
mentation between student and teacher models. This is possible because we do
backpropagation of the gradients only for the student model parameters.

3 Experiments

3.1 MRI Spinal Cord Gray Matter Segmentation

In this work, in order to evaluate our technique on a realistic scenario, we use
the publicly available multi-center Magnetic Resonance Imaging (MRI) Spinal
Cord Gray Matter Segmentation dataset from [17].

Dataset. The dataset is comprised of 80 healthy subjects (20 subjects from each
center) and obtained using different scanning parameters and also multiple MRI
systems. The voxel resolution of the dataset ranges from 0.25 × 0.25 × 2.5 mm
up to 0.5 × 0.5 × 5.0 mm. A sample of one subject axial slice image can be seen
in Fig. 1. We split the dataset in a realistic small data regime: only 8 subjects
are used as training samples, resulting in 86 axial training slices. We used 8
subjects for validation, resulting in 90 axial slices. For the unlabeled set we
used 40 subjects, resulting in 613 axial slices and for the test set we used 12
subjects, resulting in 137 slices. All samples were resampled to a common space
of 0.25 × 0.25 mm.

Network Architecture. To evaluate our technique, we used a very simple
U-Net [18] architecture with 15 layers, Batch Normalization, Dropout and ReLU
activations. U-Nets are very common in medical imaging domain, hence the
architectural choice for the experiment. We also used a 2D slice-wise training
procedure with axial slices.
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Training Procedure. For the supervised-only baseline, we used Adam opti-
mizer with β1 = 0.9 and β2 = 0.999, mini-batch size of 8, dropout rate of 0.5,
Batch Normalization momentum of 0.9 and L2 penalty of λ = 0.0008. For the
data augmentation, we used rotation angle between −4.5 and 4.5 and pixel-
wise additive Gaussian noise sampled from N (0, 0.01). We used a learning rate
η = 0.0006 given the small mini-batch size, also subject to a initial ramp-up of
50 epochs and subject to a cosine annealing decay as used by [12]. We trained
the model for 1600 epochs.

For the semi-supervised experiment, we used the same parameters of the
aforementioned supervised-only baseline, except for the L2 penalty of λ = 0.0006.
We used an EMA α = 0.99 during the first 50 epochs, later we change it to
α = 0.999. We also employed a consistency weight factor of 2.9 subject to a
ramp-up in the first 100 epochs. We trained the model for 350 epochs.

Results. As we can see in Table 1, our technique not only improved the results
on 5/6 evaluated metrics but also reduced the variance, showing a better reg-
ularized model in terms of precision/recall balance. The model also showed a
very good improvement on overlapping metrics such as Dice and mean inter-
section over union (mIoU). Given that we exhausted the challenge dataset [17]
to obtain the unlabeled samples, a comparison with [16] was unfeasible given
different dataset splits. We leave this work for further explorations given that
incorporating extra external data would also mix domain adaptation issues into
the evaluation.

Table 1. Result comparison for the Spinal Cord Gray Matter segmentation challenge
using our semi-supervised method and a pure supervised baseline. Results are 10 runs
average with standard deviation in parenthesis where bold font represents the best
result. Dice is the Dice Similarity Coefficient and mIoU is the mean intersection over
union. Other metrics are self-explanatory.

Dice mIoU Accuracy Precision Recall Specificity

Supervised 67.915

(0.313)

53.679

(0.327)

99.745

(0.005)

57.948

(0.788)

92.495

(0.907)

99.775

(0.010)

Semi-supervised 70.209

(0.229)

55.509

(0.253)

99.792

(0.003)

64.732

(0.773)

86.112

(0.936)

99.846

(0.006)

4 Related Work

Only a few works were developed in the context of semi-supervised segmentation,
especially in the field of medical imaging. Only recently, a U-Net was used as
auxiliary embedding in [19], however, with focus on domain adaptation and using
a private dataset.

In [20], they use a Generative Adversarial Networks (GAN) for the semi-
supervised segmentation of natural images, however, they employ unrealistic



18 C. S. Perone and J. Cohen-Adad

dataset sizes when compared to the medical imaging domain datasets, along
with ImageNet pre-trained networks.

In [21] they propose a technique using adversarial training, but they focus on
the knowledge transfer between natural images with pixel-level annotation and
weakly-labeled images with image-level information.

5 Conclusion

In this work we extended the semi-supervised mean teacher approach for segmen-
tation tasks, showing that even on a realistic small data regime, this technique
can provide major improvements if unlabeled data is available. We also devised
a way to maintain the traditional data augmentation procedures while still tak-
ing advantage of the teacher/student regularization. The proposed technique
can be used with any other Deep Learning architecture since it decouples the
semi-supervised training procedure from the architectural choices.

It is evident from these results that future explorations of this technique
can improve the results even further, given that even with a small amount of
unlabeled samples, we showed that the technique was able to provide significant
improvements.
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