
UNet++: A Nested U-Net Architecture
for Medical Image Segmentation

Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh,
and Jianming Liang(B)

Arizona State University, Tempe, USA
{zongweiz,mrahmans,ntajbakh,jianming.liang}@asu.edu

Abstract. In this paper, we present UNet++, a new, more powerful
architecture for medical image segmentation. Our architecture is essen-
tially a deeply-supervised encoder-decoder network where the encoder
and decoder sub-networks are connected through a series of nested,
dense skip pathways. The re-designed skip pathways aim at reducing
the semantic gap between the feature maps of the encoder and decoder
sub-networks. We argue that the optimizer would deal with an easier
learning task when the feature maps from the decoder and encoder net-
works are semantically similar. We have evaluated UNet++ in compar-
ison with U-Net and wide U-Net architectures across multiple medical
image segmentation tasks: nodule segmentation in the low-dose CT scans
of chest, nuclei segmentation in the microscopy images, liver segmenta-
tion in abdominal CT scans, and polyp segmentation in colonoscopy
videos. Our experiments demonstrate that UNet++ with deep supervi-
sion achieves an average IoU gain of 3.9 and 3.4 points over U-Net and
wide U-Net, respectively.

1 Introduction

The state-of-the-art models for image segmentation are variants of the encoder-
decoder architecture like U-Net [9] and fully convolutional network (FCN) [8].
These encoder-decoder networks used for segmentation share a key similarity:
skip connections, which combine deep, semantic, coarse-grained feature maps
from the decoder sub-network with shallow, low-level, fine-grained feature maps
from the encoder sub-network. The skip connections have proved effective in
recovering fine-grained details of the target objects; generating segmentation
masks with fine details even on complex background. Skip connections is also
fundamental to the success of instance-level segmentation models such as Mask-
RCNN, which enables the segmentation of occluded objects. Arguably, image
segmentation in natural images has reached a satisfactory level of performance,
but do these models meet the strict segmentation requirements of medical
images?

Segmenting lesions or abnormalities in medical images demands a higher level
of accuracy than what is desired in natural images. While a precise segmentation

c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): DLMIA 2018/ML-CDS 2018, LNCS 11045, pp. 3–11, 2018.
https://doi.org/10.1007/978-3-030-00889-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00889-5_1&domain=pdf


4 Z. Zhou et al.

mask may not be critical in natural images, even marginal segmentation errors in
medical images can lead to poor user experience in clinical settings. For instance,
the subtle spiculation patterns around a nodule may indicate nodule malignancy;
and therefore, their exclusion from the segmentation masks would lower the
credibility of the model from the clinical perspective. Furthermore, inaccurate
segmentation may also lead to a major change in the subsequent computer-
generated diagnosis. For example, an erroneous measurement of nodule growth
in longitudinal studies can result in the assignment of an incorrect Lung-RADS
category to a screening patient. It is therefore desired to devise more effective
image segmentation architectures that can effectively recover the fine details of
the target objects in medical images.

To address the need for more accurate segmentation in medical images, we
present UNet++, a new segmentation architecture based on nested and dense
skip connections. The underlying hypothesis behind our architecture is that
the model can more effectively capture fine-grained details of the foreground
objects when high-resolution feature maps from the encoder network are grad-
ually enriched prior to fusion with the corresponding semantically rich feature
maps from the decoder network. We argue that the network would deal with
an easier learning task when the feature maps from the decoder and encoder
networks are semantically similar. This is in contrast to the plain skip con-
nections commonly used in U-Net, which directly fast-forward high-resolution
feature maps from the encoder to the decoder network, resulting in the fusion
of semantically dissimilar feature maps. According to our experiments, the sug-
gested architecture is effective, yielding significant performance gain over U-Net
and wide U-Net.

2 Related Work

Long et al. [8] first introduced fully convolutional networks (FCN), while U-
Net was introduced by Ronneberger et al. [9]. They both share a key idea: skip
connections. In FCN, up-sampled feature maps are summed with feature maps
skipped from the encoder, while U-Net concatenates them and add convolutions
and non-linearities between each up-sampling step. The skip connections have
shown to help recover the full spatial resolution at the network output, mak-
ing fully convolutional methods suitable for semantic segmentation. Inspired
by DenseNet architecture [5], Li et al. [7] proposed H-denseunet for liver and
liver tumor segmentation. In the same spirit, Drozdzalet al. [2] systematically
investigated the importance of skip connections, and introduced short skip con-
nections within the encoder. Despite the minor differences between the above
architectures, they all tend to fuse semantically dissimilar feature maps from
the encoder and decoder sub-networks, which, according to our experiments,
can degrade segmentation performance.

The other two recent related works are GridNet [3] and Mask-RCNN [4].
GridNet is an encoder-decoder architecture wherein the feature maps are wired in
a grid fashion, generalizing several classical segmentation architectures. GridNet,
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however, lacks up-sampling layers between skip connections; and thus, it does not
represent UNet++. Mask-RCNN is perhaps the most important meta framework
for object detection, classification and segmentation. We would like to note that
UNet++ can be readily deployed as the backbone architecture in Mask-RCNN
by simply replacing the plain skip connections with the suggested nested dense
skip pathways. Due to limited space, we were not able to include results of
Mask RCNN with UNet++ as the backbone architecture; however, the interested
readers can refer to the supplementary material for further details.

3 Proposed Network Architecture: UNet++

Figure 1a shows a high-level overview of the suggested architecture. As seen,
UNet++ starts with an encoder sub-network or backbone followed by a decoder
sub-network. What distinguishes UNet++ from U-Net (the black components in
Fig. 1(a) is the re-designed skip pathways (shown in green and blue) that connect
the two sub-networks and the use of deep supervision (shown red).

Fig. 1. (a) UNet++ consists of an encoder and decoder that are connected through a
series of nested dense convolutional blocks. The main idea behind UNet++ is to bridge
the semantic gap between the feature maps of the encoder and decoder prior to fusion.
For example, the semantic gap between (X0,0, X1,3) is bridged using a dense convolu-
tion block with three convolution layers. In the graphical abstract, black indicates the
original U-Net, green and blue show dense convolution blocks on the skip pathways, and
red indicates deep supervision. Red, green, and blue components distinguish UNet++
from U-Net. (b) Detailed analysis of the first skip pathway of UNet++. (c) UNet++
can be pruned at inference time, if trained with deep supervision. (Color figure online)
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3.1 Re-designed Skip Pathways

Re-designed skip pathways transform the connectivity of the encoder and
decoder sub-networks. In U-Net, the feature maps of the encoder are directly
received in the decoder; however, in UNet++, they undergo a dense convolu-
tion block whose number of convolution layers depends on the pyramid level.
For example, the skip pathway between nodes X0,0 and X1,3 consists of a dense
convolution block with three convolution layers where each convolution layer
is preceded by a concatenation layer that fuses the output from the previous
convolution layer of the same dense block with the corresponding up-sampled
output of the lower dense block. Essentially, the dense convolution block brings
the semantic level of the encoder feature maps closer to that of the feature maps
awaiting in the decoder. The hypothesis is that the optimizer would face an
easier optimization problem when the received encoder feature maps and the
corresponding decoder feature maps are semantically similar.

Formally, we formulate the skip pathway as follows: let xi,j denote the output
of node Xi,j where i indexes the down-sampling layer along the encoder and j
indexes the convolution layer of the dense block along the skip pathway. The
stack of feature maps represented by xi,j is computed as

xi,j =

{H (
xi−1,j

)
, j = 0

H
([[

xi,k
]j−1

k=0
,U(xi+1,j−1)

])
, j > 0

(1)

where function H(·) is a convolution operation followed by an activation func-
tion, U(·) denotes an up-sampling layer, and [ ] denotes the concatenation layer.
Basically, nodes at level j = 0 receive only one input from the previous layer
of the encoder; nodes at level j = 1 receive two inputs, both from the encoder
sub-network but at two consecutive levels; and nodes at level j > 1 receive j +1
inputs, of which j inputs are the outputs of the previous j nodes in the same
skip pathway and the last input is the up-sampled output from the lower skip
pathway. The reason that all prior feature maps accumulate and arrive at the
current node is because we make use of a dense convolution block along each
skip pathway. Figure 1b further clarifies Eq. 1 by showing how the feature maps
travel through the top skip pathway of UNet++.

3.2 Deep Supervision

We propose to use deep supervision [6] in UNet++, enabling the model to oper-
ate in two modes: (1) accurate mode wherein the outputs from all segmentation
branches are averaged; (2) fast mode wherein the final segmentation map is
selected from only one of the segmentation branches, the choice of which deter-
mines the extent of model pruning and speed gain. Figure 1c shows how the
choice of segmentation branch in fast mode results in architectures of varying
complexity.

Owing to the nested skip pathways, UNet++ generates full resolution feature
maps at multiple semantic levels, {x0,j , j ∈ {1, 2, 3, 4}}, which are amenable to
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deep supervision. We have added a combination of binary cross-entropy and dice
coefficient as the loss function to each of the above four semantic levels, which
is described as:

L(Y, Ŷ ) = − 1
N

N∑
b=1

(
1
2

· Yb · log Ŷb +
2 · Yb · Ŷb

Yb + Ŷb

)
(2)

where Ŷb and Yb denote the flatten predicted probabilities and the flatten ground
truths of bth image respectively, and N indicates the batch size.

In summary, as depicted in Fig. 1a, UNet++ differs from the original U-Net
in three ways: (1) having convolution layers on skip pathways (shown in green),
which bridges the semantic gap between encoder and decoder feature maps; (2)
having dense skip connections on skip pathways (shown in blue), which improves
gradient flow; and (3) having deep supervision (shown in red), which as will be
shown in Sect. 4 enables model pruning and improves or in the worst case achieves
comparable performance to using only one loss layer.

4 Experiments

Datasets: As shown in Table 1, we use four medical imaging datasets for model
evaluation, covering lesions/organs from different medical imaging modalities.
For further details about datasets and the corresponding data pre-processing,
we refer the readers to the supplementary material.

Table 1. The image segmentation datasets used in our experiments.

Dataset Images Input Size Modality Provider

Cell nuclei 670 96× 96 microscopy Data Science Bowl 2018

Colon polyp 7,379 224× 224 RGB video ASU-Mayo [10,11]

Liver 331 512× 512 CT MICCAI 2018 LiTS Challenge

Lung nodule 1,012 64× 64× 64 CT LIDC-IDRI [1]

Baseline Models: For comparison, we used the original U-Net and a customized
wide U-Net architecture. We chose U-Net because it is a common performance
baseline for image segmentation. We also designed a wide U-Net with similar
number of parameters as our suggested architecture. This was to ensure that
the performance gain yielded by our architecture is not simply due to increased
number of parameters. Table 2 details the U-Net and wide U-Net architecture.

Implementation Details: We monitored the Dice coefficient and Intersection
over Union (IoU), and used early-stop mechanism on the validation set. We also
used Adam optimizer with a learning rate of 3e−4. Architecture details for U-
Net and wide U-Net are shown in Table 2. UNet++ is constructed from the

https://www.kaggle.com/c/data-science-bowl-2018
https://competitions.codalab.org/competitions/17094
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
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Table 2. Number of convolutional kernels in U-Net and wide U-Net.

Encoder/decoder X0,0/X0,4 X1,0/X1,3 X2,0/X2,2 X3,0/X3,1 X4,0/X4,0

U-Net 32 64 128 256 512

Wide U-Net 35 70 140 280 560

original U-Net architecture. All convolutional layers along a skip pathway (Xi,j)
use k kernels of size 3 × 3 (or 3 × 3 × 3 for 3D lung nodule segmentation) where
k = 32 × 2i. To enable deep supervision, a 1× 1 convolutional layer followed by
a sigmoid activation function was appended to each of the target nodes: {x0,j |
j ∈ {1, 2, 3, 4}}. As a result, UNet++ generates four segmentation maps given an
input image, which will be further averaged to generate the final segmentation
map. More details can be founded at github.com/Nested-UNet.

Fig. 2. Qualitative comparison between U-Net, wide U-Net, and UNet++, showing
segmentation results for polyp, liver, and cell nuclei datasets (2D-only for a distinct
visualization).

Results: Table 3 compares U-Net, wide U-Net, and UNet++ in terms of the
number parameters and segmentation accuracy for the tasks of lung nodule
segmentation, colon polyp segmentation, liver segmentation, and cell nuclei seg-
mentation. As seen, wide U-Net consistently outperforms U-Net except for liver
segmentation where the two architectures perform comparably. This improve-
ment is attributed to the larger number of parameters in wide U-Net. UNet++
without deep supervision achieves a significant performance gain over both U-
Net and wide U-Net, yielding average improvement of 2.8 and 3.3 points in

https://github.com/MrGiovanni/Nested-UNet
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IoU. UNet++ with deep supervision exhibits average improvement of 0.6 points
over UNet++ without deep supervision. Specifically, the use of deep supervi-
sion leads to marked improvement for liver and lung nodule segmentation, but
such improvement vanishes for cell nuclei and colon polyp segmentation. This is
because polyps and liver appear at varying scales in video frames and CT slices;
and thus, a multi-scale approach using all segmentation branches (deep super-
vision) is essential for accurate segmen. Figure 2 shows a qualitative comparison
between the results of U-Net, wide U-Net, and UNet++.

Model Pruning: Figure 3 shows segmentation performance of UNet++ after
applying different levels of pruning. We use UNet++ Li to denote UNet++
pruned at level i (see Fig. 1c for further details). As seen, UNet++ L3 achieves
on average 32.2% reduction in inference time while degrading IoU by only 0.6
points. More aggressive pruning further reduces the inference time but at the
cost of significant accuracy degradation.

Table 3. Segmentation results (IoU: %) for U-Net, wide U-Net and our suggested
architecture UNet++ with and without deep supervision (DS).

Architecture Params Dataset

Cell nuclei Colon polyp Liver Lung nodule

U-Net [9] 7.76M 90.77 30.08 76.62 71.47

Wide U-Net 9.13M 90.92 30.14 76.58 73.38

UNet++ w/o DS 9.04M 92.63 33.45 79.70 76.44

UNet++ w/ DS 9.04M 92.52 32.12 82.90 77.21

Fig. 3. Complexity, speed, and accuracy of UNet++ after pruning on (a) cell nuclei,
(b) colon polyp, (c) liver, and (d) lung nodule segmentation tasks respectively. The
inference time is the time taken to process 10k test images using one NVIDIA TITAN
X (Pascal) with 12 GB memory.
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5 Conclusion

To address the need for more accurate medical image segmentation, we pro-
posed UNet++. The suggested architecture takes advantage of re-designed skip
pathways and deep supervision. The re-designed skip pathways aim at reducing
the semantic gap between the feature maps of the encoder and decoder sub-
networks, resulting in a possibly simpler optimization problem for the optimizer
to solve. Deep supervision also enables more accurate segmentation particularly
for lesions that appear at multiple scales such as polyps in colonoscopy videos.
We evaluated UNet++ using four medical imaging datasets covering lung nodule
segmentation, colon polyp segmentation, cell nuclei segmentation, and liver seg-
mentation. Our experiments demonstrated that UNet++ with deep supervision
achieved an average IoU gain of 3.9 and 3.4 points over U-Net and wide U-Net,
respectively.
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