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Abstract. Restricted Boltzmann machines (RBMs) have been proven to be
powerful tools in many specific applications, such as representational learning
and document modelling. However, the extensions of RBMs are rarely used in
the field of multi-view learning. In this paper, we present a new multi-view
RBM model, named as the RBM with posterior consistency, for multi-view
classification. The RBM with posterior consistency computes multiple repre-
sentations by regularizing the marginal likelihood function with the consistency
among representations from different views. Contrasting with existing multi-
view classification methods, such as multi-view Gaussian pro-cess with poste-
rior consistency (MvGP) and consensus and complementarity based maximum
entropy discrimination (MED-2C), the RBM with posterior consistency have
achieved satisfactory results on two-class and multi-class classification datasets.

Keywords: Restricted Boltzmann machines � Representational learning
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1 Introduction

Restricted Boltzmann machines (RBMs) are popular probability graph models for
representing dependency structure between random variables [1]. It is very known that
RBMs are energy-based models and powerful tools for representational learning. By
modifying energy functions, RBMs can be widely used in artificial intelligence and
machine learning fields [2]. RBMs have been developed for real-valued data modelling
[3], sequential data modelling [4], noisy data modelling [5], document modelling [6],
multimodal learning [7], and other applications. RBMs also are basic building blocks
for creating deep belief networks (DBNs) [1] and deep Boltzmann machines (DBMs)
[8]. Contrasting with RBMs, these two deep networks show better representational
learning and classification abilities.

The general RBM and many RBM variants are only suitable for addressing the
single view data. Actually, there are many data coming from multiple views, where
each view may be a feature vector or a domain. Therefore, many researchers focus on
the multi-view learning task [9]. Recently, there are many efficient multi-view algo-
rithms for classification, such as multi-view Gaussian process with posterior Consis-
tency (MvGP) [10] and consensus and complementarity based maximum entropy
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discrimination (MED-2C) [11]. The MvGP and the MED-2C are posterior-consistency
style and margin-consistency style algorithms, respectively. These two algorithms both
balance the relationship between the multi-view data and the model and achieve the
state-of-the-art classification accuracy. It is very known that RBMs are powerful tools
in machine learning, but RBMs have few applications in multi-view learning. Our work
focuses on the consistency among view-specific hidden layers and balances the rela-
tionship between the multi-view data and the model for classification.

In this paper, we first propose a new RBM model, named as the RBM with
posterior consistency (PCRBM), for multi-view classification. The PCRBM models
each separated view as a RBM. The weights of the original RBM are optimized by
maximizing the log likelihood function. Unlike the general RBM, the PCRBM updates
weights by maximizing the log likelihood function on each view and maximizing the
consistency among the hidden layer conditional distributions on each view. In addition,
original RBMs only deal with the binary data, so we extend PCRBMs to exponential
family RBMs (Exp-RBMs) [12] and propose exponential family RBMs with posterior
consistency (Exp-PCRBMs). In the Exp-PCRBM, activation functions in visible or
hidden units can be any smooth monotonic non-linearity function, such as Gaussian
function and ReLU function.

The remainder of the paper is organized as follows. Section 2 details PCRBMs,
including the inference and learning procedures. Section 3 gives extensions of
PCRBMs for multi-view data and real data. In Sect. 4, experiment results prove the
feasibilities of the proposed methods. Finally, some conclusions and the intending
work are given in the last section.

2 Restricted Boltzmann Machines with Posterior Consistency
for Two-View Classification

2.1 Restricted Boltzmann Machines with Posterior Consistency for Two-
View Data

It well known that the general RBM is only suitable for addressing single view data.
We propose a new RBM model to deal with two-view data and call it the RBM with
posterior consistency (PCRBM). The PCRBM first makes use of a general RBM to
model each view of data. That is, the conditional probabilities of visible or hidden units
in the PCRBM are similar to the general RBM. And then, the PCRBM utilizes the
stochastic approximation method to update network weights by maximizing the log
likelihood function on each view and maximizing the consistency between the con-
ditional probabilities of hidden units given visible data on each view. In the PCRBM,
the negative of the distance between two conditional probabilities is used to measure
the consistency between two conditional probabilities. The PCRBM is also a generative
model, and it contains two layers of visible units v1 ¼ fv1i gD1i¼1; v

2 ¼ fv2i gD2i¼1 and two
layers of hidden units h1 ¼ fh1j gJj¼1; h

2 ¼ fh2j gJj¼1 corresponding to the two-view data

with the connection weights h ¼ fW1; b1; c1;W2; b2; c2g. The energy function of the
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PCRBM is composed of two general RBM models, then conditional probabilities on
two views can be given by:

Pðh1j ¼ 1jv1Þ ¼ r
X

i
v1i W

1
ij þ b1j

� �
; Pðv1i ¼ 1jh1Þ ¼ r

X
j
W1

ij h
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where rðxÞ ¼ 1= 1þ expð�xÞð Þ.
Assume that the two views training sample set X1 ¼ v1 ðnÞ

� �N
n¼1;X2 ¼ v2ðnÞ

� �N
n¼1;

Y ¼ YðnÞ� �N
n¼1, where X1 and X2 are two-view data, and Y is the corresponding label.

In order to maximize the consistency between hidden layer conditional probabilities of
two views, the objective of the PCRBM can be expressed as:
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where k is a parameter to balance the log likelihood function. We can make use of the
stochastic approximation algorithm and the derivation of the posterior consistency to
maximize the objective function, and the details is given in next section. After the pre-
training, the PCRBM utilizes the data with labels and the gradient descent method to
fine-tune the weights for classification. In the general RBM, the weights connecting
visible units and hidden units are also fine-tuned. However, in the PCRBM, the weights
connecting visible units and hidden units contain the posterior consistency between two
views and the conditional probabilities over hidden units given visible units should
remain unchanged. Define H1ðnÞ ¼ P h1ðnÞjv1ðnÞ; h� �

, and H2ðnÞ ¼ P h2ðnÞjv2ðnÞ; h� �
(H1;H2 2 <N�J ), and then the objective function of the classification model can be
expressed as:
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h0

a
2

P
n YðnÞ � P Ŷ
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where a 2 0; 1½ � is a parameter to balance two views, and
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Therefore, we use the gradient descent method to fine-tune the weights connecting
hidden units and label units [13]. The PCRBM is not only suitable for two-class
classification data but also for multi-class classification data.
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2.2 Inference and Learning Procedure for Two-View Data

For each view, the gradient with respect to a weight can be divided into two parts, the
gradient of the posterior consistency and the gradient of the log likelihood function. the
consistency between H1 and H2 can be defined as the negative of the distance between
two conditional probabilities

consistency H1;H2� � ¼ 1
N

X
n

� 1
2

H1ðnÞ �H2ðnÞ�� ��2
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 !
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n

H1ðnÞ �H2ðnÞ
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2
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where � denotes element-wise multiplication. We have used the mean-field variational
inference method to obtain H1ðnÞ ¼ P h1ðnÞjv1ðnÞ; h� �

and H2ðnÞ ¼ P h2ðnÞjv2ðnÞ; h� �
. To

compute the gradient of the consistency with respect to a weight, we can compute the
gradient of the consistency with respect to H1 and H2 and then use backpropagation.
Take as an example the gradient with respect to W1 in the first view. The gradient of
the posterior consistency with respect to W1 can be given by:
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In addition, the gradient of the log likelihood function with respect to a weight can be
simplified to the difference between data-dependent statistic and model-dependent
statistic. Moreover, the CD-k or other stochastic approximation algorithms provide an
effective way to estimate the mode-dependent statistic. The gradient of the log likeli-
hood function with respect to W1 can be given by:

DW1
log�likelihood ¼ EPdata X1TH1	 
� EPmodel X1

TH1	 
� ��
N; ð8Þ

This way, the gradient of the objective function with respect to W1 can be given by:
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Likewise, the gradients of the objective function with respect to other weights are
computed by using the similar method.
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3 Extensions of Restricted Boltzmann Machines
with Posterior Consistency

3.1 Extensions for Multi-view Data

By taking two views as an example, we detail the model of restricted Boltzmann
machines with posterior consistency (PCRBMs) in the above section. The PCRBM has
two objective functions corresponding to two-stage tasks, the objective for maximizing
the log likelihood function and the correlation and the objective for classification. The
reason the PCRBM can be extend to address multi-view data is that each objective
function can be express as an elegant formulation. In the first-stage task, the objective
for multiple views also can divided into two parts, the log likelihood function on each
view and maximizing the posterior consistency among multiple views. The PCRBM
also model each view of data as a general RBM, and the conditional probabilities of
hidden units given visible units is easily sampled. Moreover, the posterior consistency
between two conditional probabilities can be calculated by the negative of the distance
between two conditional probabilities. For a multiple views training set of N samples

X1 ¼ fv1 ðnÞgNn¼1; � � � ;XK ¼ fvK ðnÞgNn¼1; Y ¼ YðnÞ� �N
n¼1, the objective for maximizing

the log likelihood function and the posterior consistency in multiple views can be
expressed as:

max
h
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:
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We can find that the objective in k-view is that
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and utilize the stochastic approximation algorithm and the derivation of the correlation
to maximize the objective function in k-view. In the second-stage task, we utilize the
data with labels and the gradient descent method to fine-tune the weights connecting
hidden units and label units. The objective function for classification in multiple views
can be expressed as:

min
h0

1
2

P
k ak

P
n YðnÞ � P Ŷ

ðnÞjHk ðnÞ; h0
� ���� ���2 : ð12Þ

34 D. Shifei et al.



3.2 Exponential Family Restricted Boltzmann Machines with Posterior
Consistency for Real Data

Ravanbakhsh et al. proposed exponential family RBMs (Exp-RBMs) where each unit
can choose any smooth monotonic non-linearity function as the activation function.
Regardless of the activation function, each visible (hidden) unit receives an input
ti ¼

P
j Wijhj þ ci (gj ¼

P
i viWij þ bj). Consider an Exp-RBM with variables fv; hg,

and the energy function is defined as:

Eðv; h; hÞ ¼ �
XD
i¼1

XJ
j¼1

viWijhj �
XJ
j¼1

bjhj

�
XD
i¼1

civi þ
XJ
j¼1

R�ðhjÞþ sðhjÞ
� �þ XD

i¼1

F�ðviÞþ gðviÞð Þ; ð13Þ

where F� and g are functions of vi, the derivative of F� is f �1 (f�1 is the inverse function
of f and the anti-derivative of f is F), and similarly R� and s are functions of hj.

Like the general RBM, the proposed PCRBM is also only suitable for binary data.
Each unit of the Exp-RBM can choose any smooth monotonic non-linearity function as
the activation function. Therefore, we propose the exponential family restricted
Boltzmann machines with posterior consistency (Exp-PCRBM) for multi-view learn-
ing. The proposed Exp-PCRBM is suitable for binary and real-valued data, where the
activation function of each hidden unit can choose any smooth monotonic non-linearity
function not just the sigmoid function. in this paper, we choose the sigmoid function as
the activation function of each hidden unit in the Exp-PCRBM.

Assume that all the hidden units of the Exp-PCRBM are binary, the solution of two
objective functions in the Exp-PCRBM is similar to the PCRBM. For each binary
visible unit, the conditional probability is strictly the sigmoid function, and then we
have F tið Þ ¼ log 1þ expðtiÞð Þ, F� við Þ ¼ 1� við Þ log 1� við Þþ vi log við Þ ¼ 0, and
gðviÞ is a constant. Thus, if each visible unit is binary, then the energy of the Exp-
PCRBM is same as the PCRBM. For each visible unit obeying Gaussian conditional
distribution, this distribution can be expressed as a Gaussian approximation
f ðtiÞ; f 0ðtiÞð Þ, where f ðtiÞ ¼ r2i ti is the mean and f 0ðtiÞ ¼ r2i is the variance. Then,
F tið Þ ¼ r2i t

2
i

� ��
2, F� við Þ ¼ v2i

�
2r2i
� �

, and gðviÞ is a constant. Thus, if each visible
unit obeying Gaussian conditional distribution, then the Exp-PCRBM is same as the
PCRBM except conditional distributions over visible units. Therefore, in this paper, we
choose the activation function of each hidden unit in the Exp-PCRBM according to the
input data from each view.

4 Experiments

In order to test the performance of the algorithms, the proposed algorithms are com-
pared with state-of-the-art classification algorithms, the multi-view Gaussian process
with posterior consistency (MvGP) and consensus and complementarity based maxi-

Multi-view Restricted Boltzmann Machines with Posterior Consistency 35



mum entropy discrimination (MED-2C). All these algorithms are carried out in a work
station with a core i7 DMI2-Intel 3.6 GHz processor and 18 GB RAM running
MATLAB 2017a.

4.1 Learning Results on Two-Class Data Sets

Advertisement: The Advertisement is a binary data set, and it contains 3279 examples
(459 ads and 2820 non-ads). The first view describes the image itself, while the other
view contains all other features [11]. The dimensions of the two views are 587 and 967,
respectively.

WDBC: The WDBC contains 569 examples (357 benign and 212 malignant). The first
view contains 10 features which are computed for each cell nucleus, while the other
view contains all other 20 features which is the mean and the standard error of the first
view.

Z-Alizadeh sani: The Z-Alizadeh sani contains 303 examples (216 cad and 87 nor-
mal). The first view contains the patients’ demographic characteristics and symptoms,
while the other view contains the results of physical examinations, electrocardiography,
echocardiography, and laboratory tests. The dimensions of the two views are 31 and
24, respectively.

We make use of the 5-fold cross-validation method to evaluate the proposed
methods on two-class data sets, where three folds are used for training and the rest two
folds for testing. In addition, we also divide the above training set into a training set and
a validation set, where each of the folds is used as the validation set once (10-fold
cross-validation). In the MvGP, the value of parameters a and b is determined by cross-
validation from {0, 0.1, …, 1} and {2−18, 2−12, 2−8, 2, 23, 28}, respectively [10]. In the
MED-2C, the value of parameter c is determined by cross-validation from {2−5, 2−4,
…, 25} [11]. Therefore, in the Exp-PCRBM, the value of parameters a and k is
determined by cross-validation from {0, 0.1, …, 1} and {2−18, 2−12, 2−8, 2, 23, 28},
respectively. In the Exp-PCRBM, the number of hidden layer units corresponding to
each view is set to 100. We also run the Exp-RBM for each view, and Exp-RBM1 and
Exp-RBM2 correspond to the first view and the second view, respectively. Moreover,
the Exp-RBM1, the Exp-RBM2 and the Exp-PCRBM use mini-batch learning, and 100
samples are randomly selected in every iteration.

The average accuracies and standard deviations of all the algorithms are given in
Table 1. We can see that the Exp-PCRBM outperforms the other algorithms on all the
data sets. From Table 1, we can also find that: (1) the Exp-PCRBM outperforms the
MvGP and the MED-2C on all the data sets, which demonstrates the effectiveness of
the Exp-PCRBM; (2) the MvGP performs worst on all the data sets, this is because that
the point selection scheme is not used and this scheme can also be used in other
algorithms; (3) the Exp-PCRBM outperforms the Exp-RBM1 and the Exp-RBM2 on
all the data sets, which demonstrates that the representations from two views are
perfectly used for classification in the Exp-PCRBM. We can make conclusion that the
Exp-PCRBM is an effective classification method for multi-view two-class data sets.
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4.2 Results and Evaluation

The multi-class data sets used in this paper are two UCI data sets including Derma-
tology and ForestTypes.

Dermatology: The Dermatology contains 358 examples (111 psoriasis, 60 seboreic
dermatitis, 71 lichen planus, 48 pityriasis rosea, 48 cronic dermatitis, and 20 pityriasis
rubra pilaris). The first view describes clinical features, while the other view contains
histopathological features. The dimensions of the two views are 12 and 22,
respectively.

ForestTypes: The ForestTypes contains 523 examples (195 Sugi, 83 Hinoki, 159
Mixed deciduous, and 86 Other). The first view describes ASTER image bands, while
the other view contains all other features. The dimensions of the two views are 9 and
18, respectively.

We make use of the 5-fold cross-validation method to evaluate the proposed
methods on multi-class data sets, too. Like one-versus-rest support vector machines
(OvR SVMs) [14], we extend the MvGP and the MED-2C to deal with multi-class data,
and name they as the one-versus-rest MvGP (OvRMvGP) and one-versus-rest MED-2C
(OvR MED-2C). The parameters of the OvR MvGP, the OvR MED-2C, the Exp-
RBM1, Exp-RBM2, and the Exp-PCRBM are determined by cross-validation from, too.

Table 2 shows the average accuracies and standard deviations of all the algorithms
on the multi-class data sets. We can see that the Exp-PCRBM outperforms the other
algorithms on all the data sets. From Table 2, we can also find that: (1) the Exp-
PCRBM outperforms the MvGP and the MED-2C on all the data sets, which
demonstrates the effectiveness of the Exp-CRBM on multi-class data sets; (2) the Exp-
PCRBM also outperforms the Exp-RBM1 and the Exp-RBM2 on all the data sets,
which demonstrates that the representations from two views are perfectly used for
classification in the Exp-PCRBM. We can make conclusion that the Exp-PCRBM is an
effective classification method for multi-view multi-class data sets.

Table 1. Performance comparison of proposed algorithms on two-class data sets

Data sets Exp-RBM1 Exp-RBM2 MvGP MED-2C Exp-PCRBM

Advertisement 95.61 � 0.39% 96.58 � 0.65% 95.70 � 1.06% 96.68 � 0.45% 96.84 � 0.51%
WDBC 95.87 � 1.41% 98.07 � 0.50% 96.13 � 1.82% 96.92 � 1.02% 98.28 � 0.64%
Z-Alizadeh sani 86.80 � 2.69% 76.74 � 3.24% 83.98 � 4.15% 86.47 � 2.11% 89.61 � 2.14%

Table 2. Performance comparison of proposed algorithms on multi-class data sets

Data sets Exp-RBM1 Exp-RBM2 OvR MvGP OvR MED-2C Exp-PCRBM

Advertisement 86.45 � 1.58% 94.97 � 1.75% 95.53 � 2.50% 97.21 � 1.71% 98.32 � 1.06%
Z-Alizadeh sani 89.48 � 0.88% 88.91 � 1.36% 87.86 � 1.45% 88.14 � 1.05% 89.77 � 1.70%
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5 Conclusions

Restricted Boltzmann Machines (RBMs) are effectively probability graph models for
representational learning. On this basis, this paper extends RBMs to deal with multi-
view learning and names it as RBMs with posterior consistency (PCRBMs). PCRBMs
utilize the negative of the distance between two conditional probabilities to measure the
posterior consistency between two views and maximize this posterior consistency.
Then, this paper proposes correlation RBMs with posterior consistency (Exp-
PCRBMs), which are suitable for binary and real-valued data. In addition, activation
functions of Exp-PCRBMs can be any smooth monotonic non-linearity function.
Finally, experimental results show that Exp-PCRBM is effective multi-view classifi-
cation method for two-class and multi-class data.
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