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Abstract. With the development of speech technology, various spoofed speech
has brought a serious challenge to the automatic speaker verification system.
The object of this paper is replay attack detection which is the most accessible
and can be highly effective. This paper investigates discrimination between the
replay speech and genuine speech in each sub-band. For sub-bands with dis-
crimination information, we propose a new filter design approach. Finally,
experiments are conducted on the ASV spoof 2017 data set using the algorithm
proposed in this paper which demonstrates a 60% relative improvement in term
of equal error rate compared with the baseline of ASV spoof 2017.
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1 Introduction

Automatic speaker verification (ASV) is a biometric authentication technique that is
intended to recognize people by analysing their speech. With the rapid development of
this authentication technique, ASV technique has been extensively used in the fields of
life, judicial, and the financial. Compared to other biometric authentication techniques,
such as fingerprints, irises, and faces, Voiceprint authentication does not require users
to perform face to face contact. Therefore speech is more susceptible to spoofing
attacks than other biometric signals [1, 2]. Secondly, high-quality audio capture devices
and powerful audio editing software are more conducive to spoof voice to attack ASV
systems.

Spoofing attacks can be categorized as impersonation, replay, speech conversion
and speech synthesis [3]. For impersonation attacks, existing ASV techniques have
been able to effectively resist this spoofing attacks. Speech conversion and speech
synthesis requires the counterfeiters has more specialized technical. In addition, this
spoof attacks can be effectively defended by existing solutions [4, 5]. However, replay
attacks are the most accessible and can be highly effective. More importantly, popu-
larity and portability of high-fidelity audio equipment in recent years have greatly
increased the threat of replaying speech to ASV systems.

In the past two years, replay attacks have received extensive attention from
researchers. The ASV spoof 2017 Challenge uses the Constant-Q Cepstral Coefficients
(CQCC) to detect spoofing attack and its equal error rate (EER) is 24.55% [6]. In this
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database, the multi-feature fusion methods and the integrated classifier methods are
used for replay attack detection [7] and its EER is 10.8%. The fusion of the two
features of RFCC and LFCC reduced the EER to 10.52% [8]. In addition, the I-MFCC
feature has also been shown to be effective in detecting replay speech [9]. At the same
time, high-frequency information features obtained by CQT transformation has also
proven to be effective [10]. Recently, Delgado et al. used the Cepstral Mean and
Variance Normalization (CMVN) method on CQCC features [11]. The results show
that this method is very effective for detecting replay attacks. Although the above work
is significantly improved compared to the baseline, the computational complexity is
relatively high due to the introduction of the CQT transformation.

Recent work focused on how to find effective features rather than analysing the
differences between replay and genuine voice in each sub-band. Further, according to
the differences reflected in different sub-bands, feature extraction approaches are dis-
cussed in this Work.

2 Database

The ASV spoof 2017 corpus is used in our investigations. The corpus is partitioned into
three subsets: training, development, and evaluation. A summary of their composition
is presented in Table 1. This paper uses Train and Development to train the model and
Evaluation to test the performance of the model.

3 Sub-band Analysis

First, the speech signal is transformed from the time domain to the frequency domain
by time-frequency transformation method. Then the entire frequency band is divided
into 16 sub-bands and 8 sub-bands. During the experiment, one sub-band is removed at
a time, and the remaining sub-bands are used to extract the sub-band features and used
the GMM model for training; the equal error rate (EER) is used as the metrics of feature
performance. Finally, a classification level measure of discriminative ability is esti-
mated using EER ratio of a sub-band based spoofing detection system.

3.1 Sub-band Division and Analysis

The sub-bands feature extraction process is shown in Fig. 1. For each frame of speech,
frequency bins are subdivided into sub-bands based on DFT bin groupings. The

Table 1. Statistics of the ASV spoof 2017 corpus.

#Speaker #Replay
session

#Replay
configuration

#Replay
speech

#Genuine
speech

Train 10 6 3 1508 1508
Development 8 10 10 760 950
Evaluation 24 161 110 1298 12008

338 L. Lin et al.



number of the DFT bins is 256, and the window function is the Hanning. During the
experiment, one sub-band is removed at a time. Within remaining sub-bands, DCT is
applied to the corresponding log magnitude to obtain the remaining sub-band features.
The features include 150 dimensions, comprising of 50 DCT coefficients along with the
deltas and delta-deltas. Cepstral mean and variance normalization (CMVN) [12] is an
efficient normalization technique used to remove nuisance channel effects. Therefore,
the CMVN technique is applicable to sub-band feature.

The EER represents the equal error rate of all sub-bands, EERi represents the equal
error rate of the remaining sub-bands after removing the i-th sub-band, and ri repre-
sents the ratio of EERi and EER which represents the contribution capacity of the i-th
sub-band. The ratio is defined as follows:

ri ¼ EERi=EER ð1Þ

The first approach involved dividing the speech bandwidth into uniform 1 kHz
wide sub-bands. And the second approach involved dividing the speech bandwidth into
uniform 0.5 kHz wide sub-bands. The two approaches are referred to as 8-band and 16-
band divisions in the rest of the paper.

3.2 GMM Models and Performance Indicators

In Sect. 3.1, we removed each sub-band feature at a time. Within the remaining sub-
bands, a 256-component GMM system is used to determine the discriminative ability
within a removed sub-band. The process of GMM model training and identification is
shown in Fig. 2. The primary metric is the EER [13].

3.3 Sub-band Division and Analysis

Table 2 shows the EERi and ri for the 8 sub-bands. The experimental results
demonstrate that the ri of the 1st and 8th sub-bands are obviously greater than 1.

Fig. 1. Sub-band feature extraction

A Replay Speech Detection Algorithm Based on Sub-band Analysis 339



Specifically, the 0–1 kHz and 7–8 kHz sub-bands are identified as the most discrim-
inative frequency regions.

Table 3 shows the EERi and ri for the 16-bands. The experimental results show that
at low-frequencies, 0–0.5 kHz contains more discriminatory information than 0.5 Hz–
1 kHz. Also in the high-frequency region, 7.5 kHz–8 kHz contains more discrimina-
tive information.

As can be seen from Tables 2 and 3, the 0–0.5 kHz and 7–8 kHz sub-bands are
identified as the most discriminative frequency regions. And compared to low-
frequencies, high frequencies contain more discriminative information.

Fig. 2. GMM training process

Table 2. The experimental result of 8-bands

Sub-band EERi ri Sub-band EERi ri
1 (0–1 kHz) 17.22 1.468 5 (4–5 kHz) 11.68 0.997
2 (1–2 kHz) 12.00 1.025 6 (5–6 kHz) 11.20 0.956
3 (2–3 kHz) 11.59 0.988 7 (6–7 kHz) 12.12 1.035
4 (3–4 kHz) 11.54 0.985 8 (7–8 kHz) 21.90 1.870
All sub-bands 11.71 –

Table 3. The experimental result of 16-bands

Sub-band EERi ri Sub-band EERi ri
1 (0–0.5 kHz) 15.81 1.350 9 (4–4.5 kHz) 11.45 0.978
2 (0.5–1 kHz) 11.86 1.011 10 (4.5–5 kHz) 11.85 1.012
3 (1–1.5 kHz) 12.21 1.041 11 (5–5.5 kHz) 11.68 0.997
4 (1.5–2 kHz) 11.75 1.003 12 (5.5–6 kHz) 11.51 0.983
5 (2–2.5 kHz) 12.06 1.030 13 (6–6.5 kHz) 12.19 1.041
6 (2.5–3 kHz) 11.78 1.006 14 (6.5–7 kHz) 11.73 1.002
7 (3–3.5 kHz) 11.41 0.977 15 (7–7.5 kHz) 12.98 1.108
8 (3.5–4 kHz) 11.96 1.020 16 (7.5–8 kHz) 18.07 1.543
All sub-bands 11.71
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4 Filter Banks Design

For the better use of the discriminative information brought by the 0–1 kHz sub-band
and the 7–8 kHz sub-band, we have proposed two filter design approaches. The basic
idea behind the proposed approaches is the allocation of a greater number of filters
within the discriminative sub-bands [3].

Two different filter banks design approaches are presented in this paper. All two
approaches involve assigning the center frequencies of triangular filters across the
speech bandwidth. The initial approach is allocating more linear filters in discrimina-
tive frequency bands based on the ri in Sect. 3. The second approach is also based on
ri, which is allocating Mel filter banks at low-frequencies bands, linear filter banks at
intermediate frequency bands, and I-Mel filter banks at high-frequencies bands. The
output of the filter is defined as the cepstrum coefficient which includes 46 dimensions,
comprising of 15 DCT coefficients along with the deltas, delta-deltas, and log-energy.
The process of feature extraction is shown in Fig. 3.

4.1 Linear Filter Design

This approach idea is the allocation of a greater number of filters within the discrim-
inative sub-bands. The number of linear filters allocates in each band is related to the ri.
For example, in an 8-band experiment, the ri at 0–1 kHz is 1.5, the ri between 1–7 kHz
is around 1.0, and the ri between 7–8 kHz is around 1.8. Therefore the 8 -band filter
design is to design 6 linear filters per 1 kHz in the 0–1 kHz frequency band. In the
frequency band of 1–7 kHz, 4 linear filters are allocated per 1 kHz. In the 7–8 kHz
frequency band, 7 linear filters are allocated per 1 kHz. The shape of the filter banks is
shown in Fig. 4.

According to the 8 sub-band design idea, the 16-band filter bank is designed to
allocate 3 linear filters in 0–0.5 kHz, 26 linear filters in 0.5–7 kHz, and 7 linear filters
in 7–8 kHz. The shape of the filter banks is shown in Fig. 5.

Fig. 3. Feature extraction
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4.2 Mel, Linear, and I-Mel Filter Design

This approach idea is not only to allocate a greater number of filters within the dis-
criminative sub-bands but also assign more appropriate filter types to the corresponding
sub-bands. At low frequencies, we use the Mel filter design to enhance the details of the
low frequencies. At high frequencies, we use I-Mel filters (inverting the Mel scale from
high frequency to low frequency) to enhance the detail of the high frequencies, while
the Intermediate frequency uses linear filters. According to the above theory, the 8-
band filter is designed to allocate 6 Mel filters per 1 kHz in the frequency band of 0–
1 kHz. In the frequency band of 1–7 kHz, 4 linear filters are allocated per 1 kHz. In the
7–8 Hz frequency band, 7 I-Mel filters are allocated per 1 Hz. The shape of the filter
design is shown in Fig. 6.

According to the 8-band design idea, the 16-band filter bank is designed to allocate
3 Mel filters in 0–0.5 kHz frequency band and 26 linear filters in 0.5–7 kHz frequency
band. And in 7–8 kHz frequency band, 7 I-Mel filters are used in the sub-band. The
design of the filter is shown in Fig. 7.

Fig. 4. 8 sub-band linear filter design

Fig. 5. 16 sub-band linear filter design

Fig. 6. 8 sub-band combination filter design
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5 Results and Discussion

This paper proposes a new filter design method by calculating the EER ratio for each
sub-band to determine the number and shape of filters for each sub-band. In order to
verify the validity of the filter bank designed in this paper, we compare the cepstrum
coefficient proposed by the filter bank proposed in this paper with the cepstrum
coefficient proposed by the traditional filter. The cepstrum coefficient proposed by the
traditional filter is defined as LFCC. MFCC, I-MFCC, extraction process as showed in
Fig. 3. The cepstrum coefficient includes 46 dimensions, comprising of 15 DCT
coefficients along with the deltas, delta-deltas, and log-energy. In addition, we compare
the algorithm proposed in this paper with the algorithm proposed by other researchers.
Experimental results show that our algorithm is superior to other literature to varying
degrees (Table 4).

Fig. 7. 16 sub-band Mel, Linear, and I-Mel filter design

Table 4. Experimental results

Detailed description EER
(%)

Basic features 36Linear filter bank (LFCC) 13.07
36Mel filter bank (MFCC) 19.50
36 I-Mel filter bank (I-MFCC) 13.92

This paper
features

6 Linear filter in 0–1 kHz + 24Linear filter in 1–7 kHz + 7
Linear filter in 7-8 kHz

10.66

3 Linear filter in 0–0.5 kHz + 26Linear filter in 0.5–7 kHz + 7
Linear filter in 7–8 kHz

10.16

6 Mel filter in 0–1 kHz + 24 Linear filter in 1–7 kHz + 7 I-Mel
filter in 7–8 kHz z

10.81

3 Mel filter in 0–0.5 kHz + 26Linear filter in 0.5–7 kHz + 7 I-
Mel filter in 7–8 kHz

9.88

Other
literature

[6] 24.55
[11] 12.24
[7] 10.8
[9] 18.37
[10] 17.31
[8] 10.25
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6 Conclusions

In this paper, we have used EER ratio to identify sub-bands that contain discriminative
information between genuine and replay speech. Two such discriminatory sub-bands
were identified: 0–0.5 kHz and 7–8 kHz. We have then proposed two approaches to
designing banks of triangular filters that allocate a greater number of filters to the more
discriminative sub-bands. The two approaches were experimentally validated on the
ASV spoof 2017 corpus and outperform other approaches proposed by other
researchers. Considering that the number of filters in the filter bank is a key parameter
that may have a significant effect on system performance. Therefore, future work will
pay more attention to the choice of each sub-band filter.
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