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Abstract. The quantification of muscle mass is important in clinical
populations with chronic paralysis, cachexia, and sarcopenia. This is
especially true when testing interventions which are designed to maintain
or improve muscle mass. The purpose of this paper is to report on an
automated method of MRI-based thigh muscle segmentation framework
that minimizes longitudinal deviation by using femur segmentation as a
reference in a two-phase registration. Imaging data from seven patients
with severe multiple sclerosis who had undergone MRI scans at multiple
time points were used to develop and validate our method. The proposed
framework results in robust, automated co-registration between baseline
and follow up scans, and generates a reliable thigh muscle mask that
excludes intramuscular fat.

1 Introduction

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system
that can affect electrical conduction in axons in the brain, spinal cord, and optic
nerves [3]. The clinical manifestations are partly driven by the location of focal
inflammatory lesions and include paralysis/paresis, spasticity, fatigue, cognitive
impairment, and sphincter dysfunction.

Regular exercise may benefit patients with MS, primarily by ameliorating
deconditioning associated with disability. However, disability associated with
advanced disease (Expanded Disability Status Scale (EDSS) of 7.0 or more)
impedes regular exercise in this patient cohort [11,12]. Previous exercise inter-
ventions in patients with advanced MS have been short-term and largely limited
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to arm exercise. Recently, studies have begun to investigate the potential of elec-
trical stimulation and other treatments to maintain leg muscle mass. To assess
the efficacy of these treatments in MS, a precise and accurate quantification of
limb muscle mass change is critical.

In this study, we assessed the change in longitudinal thigh muscle volume in
patients with advanced MS undergoing an exercise regime based on a modified
version of NMES (Neuromuscular Electrical Stimulation) cycling [5,6]. This work
describes an automated segmentation pipeline to rapidly quantitate lean thigh
muscle volume, and accurately estimate change over time.

Previously described methods for segmenting thigh muscle volume from MR
images have utilised semi-automated approaches, including threshold algorithms
and model matching techniques [2,9]. More recently, semantic segmentation has
become a popular approach for solving computer vision problems; and attempts
have been made to segment muscle masks from MR images with deep learning
based algorithms [1]. However, these models normally do not take the intra-
muscular fat of subject into account. Additionally, longitudinal changes in thigh
muscle ROIs (regions of interest) have been seldom studied, and most published
methods [4,10,13] employ cross-sectional segmentation without indicating the
method of alignment of ROIs between baseline and follow-up images.

Hence, we propose an automated segmentation framework to rapidly and
accurately quantitate longitudinal change in thigh muscle volume from MR
images. The framework uses a novel two-phase registration method to strictly
align the relevant ROIs between baseline and follow-up; and has been evaluated
in 7 subjects. Our results indicate that the proposed method achieves a consis-
tent geometric alignment in longitudinal MR thigh images in terms of Complex
Wavelet Structural Similarity Image Metric (CW-SSIM).

2 Method

The proposed automated longitudinal thigh muscle segmentation framework is
shown in Fig. 1. Any number of 3D T1-weighted MR images of both left and right
thighs are used as the input to generate the corresponding muscle segmentation
masks. To facilitate comparative analysis, region of interest (ROI) is defined by
the analyst based on the anatomical landmarks and extends from the axial slice
immediately superior to the patella to the inferior border of the gluteus maximus
muscle. The pipeline only requires the analyst to select these two ROI endpoints
on the baseline scan.

To maintain longitudinal coherence, the femur, which remains morphologi-
cally stable over time, is segmented at each time point. A two-phase process is
used to co-register follow-up to baseline images and derive follow up ROIs in the
baseline space. Inhomogeneity correction, thresholding and morphological pro-
cessing are then applied to generate the final thigh muscle masks. The details is
described as follow.
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Fig. 1. Overall workflow for longitudinal thigh muscle segmentation. The raw input
comprises 3D T1-weighted MR images of bilateral thighs; the pipeline outputs corre-
sponding thigh muscle masks.

Fig. 2. Automated division of left and right thighs in the sagittal plane.
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2.1 Cropping

The input data for each patient/scan contains both thighs, and their relative
position is slightly different at each time point. Direct co-registration between
baseline and follow-up will lead to an inaccurate rigid alignment result. In our
pipeline, thigh muscle analysis is performed separately for left and right thighs.
To achieve this, as shown in Fig. 2(b), each 3D image is firstly projected to the
axial plane by averaging the voxels along the superior-inferior direction, and
then further averaged to L-R line to obtain the mean intensity profile as shown
in Fig. 2(c). The 3D MR thigh image is divided into left and right thigh (black
line, Fig. 2(c)) in the sagittal plane, located automatically by the interpeak nadir
in the associated intensity plot.

2.2 Two-Phase Registration

External deformation of muscle during scanning, or longitudinal change in mus-
cle morphology hampers geometric alignment and accurate co-registration of
baseline and follow up 3D thigh images. This is a critical step when calculating
volumetric change of a ROI over time. We use a modified form of FLIRT [7] for
the registration in our framework. FLIRT was originally designed for longitudi-
nal brain registration, and is based on determining the transformation (T ∗) that
minimizes the intensity-based cost function:

T ∗ = arg min
T∈ST

C(BL, T (FU)), (1)

where BL and FU represent for baseline (reference) and follow-up respectively,
T (FU) represents for the transformed FU , ST is the set of all affine transforma-
tions and C(X,Y ) is the cost function. Here we use the correlation ratio (CR) [8]
as the cost function:

C(BL, T (FU)) =
1

V ar(BL)

∑

k

nk

N
V ar(BLk). (2)

When applied in this study, the default registration uses the whole thigh as the
reference target. Unlike soft tissues, changes in bone morphology are negligible
over the observation period; we therefore elect to define the femur as the refer-
ence target and propose a two-phase registration process: in the first phase, the
transformation Tfemur, is derived and “BL” and “FU” in Eqs. (1) and (2) are
replaced with “BLfemur” and “FUfemur” respectively. Tfemur is then applied
to FU to obtain the FUreg. Since we snip the ROI of the thigh along inferior-
superior direction on the baseline image, the same measurement area along the
thigh at follow-up is obtained by aligning the BLROI to FUreg.

Figure 3 demonstrates scenarios where the use of the whole thigh as the
registration reference fails to align the follow-ups with the baseline due to: (1)
morphological change of muscle and fat (Fig. 3(a)); and (2) absence of distal
thigh in the image (Fig. 3(b)).
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Fig. 3. Comparison of registration results in different scenarios (from left to right):
baseline, registration using femur as reference and registration without using femur as
reference.

Fig. 4. The intermediate steps of morphological processing.
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2.3 Inhomogeneity Correction and Normalization

Inherent intensity inhomogeneity in MR images requires correction before a fixed
threshold is applied for the segmentation of muscle from ROIs. In our pipeline,
N4 [16], an improved version of the N3 framework [15], was used. N4 achieves the
result by feeding the input image iteratively into a smoothing operator which
contains a B-spline approximator.

2.4 Morphological Processing

After intensity inhomogeneity-correction and normalization, a fixed intensity
threshold is used to segment the thigh muscle from surrounding tissues and dif-
ferentiate the muscle from the intramuscular fat. To eliminate the noisy “ring”
between the outer boundary of thigh and the background, and also the border
between the femur and the thigh muscle, we perform following morphological
process: first performing an opening of the threshold mask then take its inter-
section with the original mask. The demonstration of intermediate steps is shown
in Fig. 4.

3 Experimental Results

Seven participants (five females and two males) with progressive MS (median
age: 55 ± 6 years old, EDSS: 7.3 ± 0.6, patients with this level of EDSS lose
majority of their mobility functions) were recruited for this study from a mul-
tidisciplinary MS clinic. Participants were asked to maintain with their usual
activity and exercise routines in the first 12 weeks (control period) of the study;
they undertook NMES leg cycling exercises three times per week during the
second 12 week study epoch. In order to obtain consistent and reliable femur
imaging, patients with following scenarios were not included in the analysis:
(a) inability to lie in a standard position, (b) hip replacement and (c) severe
spasticity.

MRI scans (both thighs) were acquired at the time of enrolment (baseline;
week 0), following the 12 week control period, and post 12 weeks of NMES
training (week 24). Additionally, long-term data was acquired from two patients.
In summary, 21 MRI exams (7 baseline, 7 mid-study and 7 post-NMES) were
acquired on a GE Discovery MR750 Scanner with 32-channel torso coil. All
subjects were scanned with a 3DT1 sequence (IRFSPGR, TE = 2.7 ms, TR =
6.5 ms, acquisition metrix = 480 × 480, Slice thickness = 1 mm).

For qualitative evaluation of the co-registration between baseline and follow-
ups, Complex Wavelet Structural Similarity Image Metric (CW-SSIM) was com-
puted as previously described [14]. Based on CW-SSIM score, our method yielded
a higher similarity between baseline femur and femur on the co-registered follow-
ups as shown in Table 1.
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Table 1. Similarities between the baseline femur and femur on the co-registered
follow-ups.

Subject FLIRT Proposed

Subject1 0.2073 ± 0.0227 0.2109 ± 0.0218

Subject2 0.2265 ± 0.0373 0.2315 ± 0.0374

Subject3 0.2303 ± 0.0392 0.2577 ± 0.0330

Subject4 0.2133 ± 0.0210 0.2165 ± 0.0201

Subject5 0.2693 ± 0.0027 0.3338 ± 0.0089

Subject6 0.2002 ± 0.0199 0.2451 ± 0.0165

Subject7 0.1145 ± 0.0497 0.1503 ± 0.0466

4 Conclusion

In this paper, we propose an automated longitudinal thigh muscle segmentation
framework to calculate muscle volume change over time to assess the treatment
effect. The technique can be potentially modified to sample upper arm muscu-
lature, and is ideally suited to applications requiring calculation of longitudinal
changes in lean muscle mass. Femur-based co-registration minimised registra-
tion error and resulted in improved baseline to follow up image alignment, as
measured by CW-SSIM. Low longitudinal measurement error and automation
suggest that our technique will be suited to future inclusion in large clinical
trials, both in the physical therapy and pharmacotherapy domains.
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