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Abstract. The determination and interpretation of fetal standard planes (FSPs)
in ultrasound examinations are the precondition and essential step for prenatal
ultrasonography diagnosis. However, identifying multiple standard planes from
ultrasound videos is a time-consuming and tedious task since there are only little
differences between standard and non-standard planes in the adjacent scan
frames. To address this challenge, we propose a general and efficient framework
to detect several standard planes from ultrasound scan images or videos auto-
matically. Specifically, a multi-scale dense networks (MSDNet) utilizing the
multi-scale architecture and dense connection is exploited, which combines the
fine level features from the shallow layers and coarse level features from the
deep layers. Moreover, this MSDNet is resource efficient, and the cascade
structure can adaptively select lightweight networks when test images are not
complicated or computational resources limited. Experimental results based on
our self-collected dataset demonstrate that the proposed method achieves a mean
average precision (mAP) of 98.15% with half resources and double speeds in
FSPs recognition task.
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1 Introduction

Prenatal diagnosis of fetal abnormalities is quite important for both family and com-
munity. 2D ultrasonic examination is the most widely used prenatal diagnostic tech-
nique because of its low cost, radiation-free, and the ability to observe the fetus in real
time. Prenatal ultrasonography generally involves image scanning, standard planes
searching, structural observation, parameter measurement and diagnosis. The deter-
mination of standard planes is the precondition of structural observation, parameter
measurement and final diagnosis [1], which is a crucial part of antenatal diagnosis.
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In fact, the judging of the standard plane requires deep knowledge and clinical expe-
rience [2]. In the underdeveloped areas, there are lack of the medical resources and
experienced doctors. Also, standard plane screening is a time-consuming and laborious
task. Therefore, it is of great significance to design an automatic standard plane
recognition system, which not only improves the efficiency of prenatal ultrasound
examination, but also reduces the burden of doctors.

Due to the continuity of the ultrasound scan images, there are only subtle difference
between the standard image and the non-standard image from adjacent frames [3].
Compared with other imaging methods, ultrasound imaging is often affected by noise
and artifacts such as shadowing, which results in poor imaging effect and affects the
recognition accuracy [4]. As shown in Fig. 1, the first row is the standard plane images,
and the second row is the non-standard plane images corresponding to different
regions. It can be seen that it is quite difficult for non-professionals to accurately
evaluate and distinguish FSPs images. Therefore, recognizing the standard image from
ultrasound image automatically is a highly challenging task.

In the recent years, deep learning is poised to reshape the feature of machine
learning. Over the last decade, research on deep learning has made amazing achieve-
ments in many fields. The deep learning related methods has also been widely applied
in analyzing medical images for prenatal analysis and diagnosis [5]. In fact, the core
concept of deep learning is to learn data representations through increasing abstraction
levels, which can learn more abstract and complex representations directly from the
raw data. In addition, deep learning has been proved to have stronger applicability and
better performance than traditional machine learning methods in the complex image
recognition tasks [6]. For this reason, we mainly focus on deep network and repre-
sentation in this study.

In order to ensure the portability of the algorithm and meet the diagnostic
requirements in speed, our study focuses on the resource efficient planning model
architecture. However, the previous deep learning studies on the standard image
recognition task ignores the computing resources issue when designing the model,

Fig. 1. Illustration of high similarity between standard and non-standard planes in ultrasound
images. (a) brain; (b) four channel chamber (4CH); (c) abdominal; (d) facial axial.
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which makes the recognition quite slow [7]. Meanwhile, densenet has demonstrated the
effectiveness of dense connections in the feature learning process in the related studies
since its inception in 2017. For example, Huang et al. built a cascaded network
MSDNet [8] based on the idea of dense connections and achieved good classification
effect on the CIFAR dataset. Inspired by this, we exploit the MSDNet to build the FSPs
recognition architecture. Experimental results on our collected in-house dataset show
that our method is easier to mitigate the practical applications to achieve the real time
detection in the clinical diagnosis.

2 Methodology

Figure 2 shows the architecture of our proposed method. There are four layers of our
network. The specific model design of dense connection and cascade are described in
the following sections.

2.1 Network Architecture

The overall structure of the network is illustrated in Fig. 2. We use Fig. 3 to specify the
dense connections in the model. The dense connection mode makes full use of the
features with the low-complexity in the shallow layers, which allows the network to
reuse and bypass the existing features of the previous layer and ensure high accuracy in
later layers [9]. Moreover, dense connections also avoid gradient disappearance, which
makes training faster and has less computational power for the same performance.

Fig. 2. The first four layers of our network. The horizontal coordinate represents the depth of the
network, and the vertical coordinate represents the scale of the feature map. The dense
connections across more than one layer are not explicitly drawn: they are implicit through
recursive connections.
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The network is designed as a cascade of layers that can be split or superimposed
depending on the difficulty of different tasks. As can be seen from Fig. 2, there is a
classifier designed between each layer and the second layer. This is designed for
resource efficient, which enables the model output classification results at any layer of
the network. This network adaptively chooses the deeper network for tough task and
the shallow network for easy task. The performance of a classifier is located in the
shallow layers of a general network, which is often poor due to the lack of coarse scale
features. The multi-scale design in the architecture provides coarse scale and high-level
feature representations that are amenable to classification.

The vertical connection on the first layer is designed to produce representations on
all S scales. It can be thought as an S-layers convolutional network. As shown in Fig. 3,
we use xsl to represent the output feature maps at layer l and scale s, and the original
input is represented as x10. Feature maps at coarser scales are obtained using the down-
sampling method.

The feature maps xsl of each subsequent layers are a concatenation of all previous
feature maps of scale s and s − 1. At the bottom of Fig. 3, we have listed the formula
for xsl of the first four layers. Here, we use . . .½ � to represent concatenation operator,
hsl :ð Þ is regular convolution, and ~hsl :ð Þ is stride convolution.

In order to test performance of any position in the network, a classifier is designed
behind each layer. The classifiers use dense connection within coarsest scale S, such as
the classifier at layer l uses all features xs1; . . .; x

s
l

� �
. Afterwards, we identify the number

Fig. 3. Illustration of dense connections (e.g. x34) and the list of output xsl of layer l in scale s.
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of layers that are most suitable for our FSPs recognition task by relevant experiments
about testing at any location of the model.

For all classifiers, we use cross entropy L fkð Þ as a loss function in training. The total
cumulative loss functions is defined as

LMSD ¼ 1
Dj j

X
x;yð Þ�D

X
k
wkL fkð Þ ð1Þ

where D represents the distribution of training dataset, wk denotes the weight of the
k-th classifier. Empirically, we find that using the same weight for all loss functions
works well in practice. In this study, we empirically set the same weight for all the loss
functions in our task.

2.2 Data Processing

Our dataset came from acquires 1499 ultrasound examinations of pregnant women with
fetal gestational aged from 14 to 28 weeks. All of the data (including images and
videos) is compiled from the electronic medical records of the hospital’s ultrasound
workstation. To some extent, those raw data in the workstation is somewhat cluttered.
Unlike some previous studies [10, 11], data is limited to one type of ultrasound device.
Our data contains images collected from several brand models of ultrasonic devices
consist of Siemens, Samsung, GE, mindray, etc. In order to be more consistent with the
actual data distribution, we did not select the data in particular. Therefore, the gap of
imaging styles between different devices will be a big challenge for classification and
recognition. And then during normal exam, sonographers are used to keep only
important standard plane images. Hence all the image data stored in the workstation is
basically standard plane. We can only get the non-standard planes from the video set.
And sonographers often add pseudo-color to the ultrasound images for more careful
observation in some cases. For majority of cases we don’t have screen capture videos
of entire fetal exam. Only a small number of medical records have short video frag-
ments that record views adjacent to the standard planes. The same as the image data,
the short videos also come from multiple branded devices. Each video was acquired
from one patient and contained 17–48 frames. We used macro command to extract all
their frames.

Because in this study we are only interested in structural information, we removed
all color doppler ultrasound images by referring to the practice of ultrasound image
data processing in other people’s studies [10]. The images contains of doctor’s marking
and the split screen images showing multiple sections also be removed. In addition all
pseudo-color images are converted to grayscale. According to the data situation, we
combined our previous work and finally selected six standard plane on the advice of
doctors. Finally, we have 22715 ultrasound images in our data set for FSPs recognition
task. The detailed composition of data set is shown in Table 1. Moreover we divided
the data into training set and test set in a ratio of 4:1.
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3 Experimental Setting and Results

We implemented all of our models using PyTorch deep learning framework. The
training was performed on a single Nvidia GTX Titan Xp, and 64G of RAM. In order
to find out the best network depth (l) for our task. We firstly conducted the experiment
of five-fold cross validation for different l. Therefore, we randomly divide all data into
two parts in a ratio of 1:4, where the small part is used as the final test set and the large
part is used for cross-validation. Afterwards, we set the network depth (l) to 15. The
results of different depths is collected, and the train epochs is set as 300. We obtain the
result of 5 verifications in each classifier, and the average accuracy of five tasks is
shown in Fig. 4. In the broken line graph, it can be seen that the recognition accuracy
has a significant upward trend at the beginning with the increase of network depth, and
it becomes flattens out after the 7th layer. The broken line peaks at the tenth floor, then
drops slightly and finally tends to be stable.

Based on the verification results in the previous step, we finally set the network
depth as 10, take all the data used in the validation as the training set, training epochs is

Table 1. Data summary

Standard planes Intro ImageNum

Brain Horizontal cross section of the thalamus 1840
4CH Four-chamber view 2409
Abdominal Standard abdominal view at stomach level 1687
Facial axial Axial facial view at eyeball level 1585
Facial coronal Coronal facial view of lips and nose 1959
Facial sagittal Facial median sagittal view 1725
Others Unmentioned standard views and non-standard planes 11510
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Fig. 4. The average accuracy of five cross
validation by classifiers in different depth.

Table 2. Performance comparison of different
networks

Model FLOPs ACC (%) FPS

ResNet110 250.81 M 97.23 128.0

DenseNet100 292.23 M 97.64 137.7

Our (l = 10) 148.01 M 98.26 226.9
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also set as 300. Table 2 shows the comparison of the computation amount, accuracy,
and FSPs recognition speed (using frame rate measurements) of different networks. It
can be seen that our model achieves nearly twice the speed and half the calculation
compared with other networks. Our model obtains a recognition accuracy of 98.25%,
which is the highest among all the listed models.

Considering that ‘Others’ class occupies a large proportion in the dataset compared
with other classes, we measure the model performance using precision, recall and F1-
score for each category. Table 3 shows the detailed test scores for all the standard
planes. We can see that our method has achieved good performance in each category,
and the average value of all three indicators is over 98%. In addition, the confusion
matrix for this test is shown in Fig. 5. From the confusion matrix, we can observe the
misclassification occurs between the standard surfaces and ‘others’ class because
completely separating standard and non-standard planes is really a hard task.

Table 3. Recognition result (%)

Standard planes Precision Recall F1-score Images

4CH 98.76 99.38 99.07 481
Abdominal 96.41 95.55 95.98 337
FA 94.74 96.84 95.77 316
FC 98.42 95.40 96.88 391
Brain 100 100 100 368
FS 97.89 94.19 96.00 344
Others 98.45 99.22 98.83 2302
Avg/total 98.15 98.15 98.14 4539

Fig. 5. Confusion matrix for MSD model
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For the deep learning model, feature representation has a great impact on the
recognition results. In order to more directly demonstrate the effectiveness of our
network for FSPs recognition task, we use the t-SNE method [12] to visualize the test
data and network feature maps. Specifically, for the original image, we convert the
pixels of each image into a row vector and concatenate the values of all the sample
vectors along the column dimension. We enter the pixel matrix and their labels into the
t-SNE function. Similarly, the output feature vectors before linear layer of classifier are
extracted, and t-SNE visualization is performed using the obtained representation form.
The visualized results are illustrated in Fig. 6, where different colors in the diagram are
used to represent data from different labels. One point in the figure represents one
image sample, where a significantly larger number of purple marks represent ‘others’
classes. The left side of the figure is the distribution of the raw data in our testset, and
the right side is the data distribution of the network classifier input feature maps (take
l = 10 as an example). The mixed distribution of test data in the original domain shows
that the class differences between FSPs and non-FSPs are very small, which makes our
task challenging. We can clearly see that the deep representation after network pro-
cessing makes the samples have obvious separability, which proves that the proposed
model is very effective for FSPs recognition tasks.

4 Conclusion

In this paper, we propose an automatic and efficient FSPs recognition method based on
MSDNet with powerful feature representation and efficient cascade design. We verify
the effectiveness of our model on the ultrasound standard plane dataset for FSPs
recognition task. We obtain the optimal number of network layers for our task through
five-fold cross validation. Compared with other networks, the experimental results
show that the proposed model achieves quite impressive performance (double speed
and half calculations). Finally, through the analysis of multiple indicators, it is proved
that our method achieves amazing performance in the recognition of each category.
Furthermore, our approach is a general framework and can be extended to the other
ultrasound standard planes recognition task. In future work, we will increase the variety

Fig. 6. t-SNE visualization results to illustrate the separability of deep representations in our
model. (a) The raw test data distribution; (b) the distribution of data using our network.
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of standard planes in the dataset and demonstrate the generalization ability of our
model. Also, we will apply this algorithm to real-time detection in clinical practice.
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