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Abstract. In this work, we propose a deep learning-based method for
iterative registration of fetal brain images acquired by ultrasound and
magnetic resonance, inspired by “Spatial Transformer Networks”. Images
are co-aligned to a dual modality spatio-temporal atlas, where computa-
tional image analysis may be performed in the future. Our results show
better alignment accuracy compared to “Self-Similarity Context descrip-
tors”, a state-of-the-art method developed for multi-modal image regis-
tration. Furthermore, our method is robust and able to register highly
misaligned images, with any initial orientation, where similarity-based
methods typically fail.

1 Introduction

Registration, the process of aligning images, is an important technique which
allows visual inspection and computational analysis of images in a common coor-
dinate system. For fetal abnormality screening, registered Magnetic Resonance
(MR)/Ultrasound (US) images may assist diagnosis as the two modalities cap-
ture complementary anatomical information. For example, in the fetal brain, MR
images have better contrast between important structures such as cortical Grey
Matter (GM) and White Matter (WM), whereas the higher spatial resolutions
of US gives better discrimination between fine structures such as the septum
pellucidum and the choroid plexus [7].

A voxel-wise image similarity measure or cost function is commonly used
in medical imaging to register images. This function quantifies the alignment
of images, where an extremum gives the optimum alignment between images.
Unfortunately, image similarity-based methods are ill-suited to the challeng-
ing task of US/MR image registration as there is no global intensity relation-
ship between the two modalities. Primarily this is due to the imaging artefacts
present in US images, such as view-dependent shadows, speckle noise, anisotropy,
attenuation, reverberation and refraction. Popular similarity measures devel-
oped specifically for other multi-modal registration problems in the past, such
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as Normalised Mutual Information (NMI), often fail, even with a good initiali-
sation [12].

Consequently, an alternative approach has arisen for registration of images
with non-global intensity relationships whereby image intensities are first trans-
formed to a modality independent representation. These are typically derived
from hand-crafted descriptors which capture structural information from images
such as edges and corners. Representations used by previous authors include
local gradient orientation [4], local phase [9] and local entropy [16]. Notably, [5]
use the concept of self-similarity, computing the similarity of small image patches
in a local neighboured within an image, which achieved state-of-the-art perfor-
mance on a challenging US/MRI registration dataset. Another approach to this
problem is modality synthesis, which aims to transform image intensities from
one modality to another allowing the registration task to be treated as a mono-
modal problem. [7] made use of this approach to register the fetal brain imaged
by US and MR for the first time.

More recently, deep neural networks have been applied to the problem of reg-
istration. Two common strategies for registration with deep learning include esti-
mating a similarity measure [2,15] and predicting transformations directly [1,13].
An advantage of the first approach is that it allows established transformation
models and optimizers to be used, however, this could be a hindrance if the learnt
similarity function is not smooth or convex. The second approach, predicting the
parameters of a transformation model directly, is receiving more research focus
recently as it allows more robust transformation estimates.

1.1 Proposed Method

In this work, we adopt a deep learning approach to tackle the challenging task
of paired 3D MR/US fetal brain registration. Our Long Short-Term Memory
(LSTM) network simultaneously predicts a joint isotropic rescaling plus inde-
pendent rigid transformations for both MR/US images, aligning them to a dual-
modality spatio-temporal atlas (Sect. 2.6). Transformation estimates are refined
iteratively over time, allowing for higher accuracy. For this, we extend the itera-
tive spatial transformer [8] for co-transformation of multiple images (see Fig. 1).
The main contributions of this work are as follows:

– A network architecture inspired by spatial transformer networks [6] for group-
wise registration of images to a common pose.

– A loss function which encourages convergence and fine alignment of images.

2 Methods

2.1 Overview

The spatial transformer module [6] allows geometric transformation of network
inputs or feature maps within a network, conditioned on the input or feature
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Fig. 1. Proposed LSTM spatial co-transformer for coalignment of 3D MR/US images.
Flow of image intensities is shown in blue while flow of transformation parameters is
shown in red. An LSTM network predicts residual transformations Mδ

mr, M
δ
us condi-

tioned on the current warped images Ous, Omr, iteratively refining their alignment.
(Color figure online)

map itself. Importantly, the spatial transformer module is differentiable, allowing
end-to-end training of any network it is inserted into. This allows reorientation
of an image into a canonical pose, simplifying the task of subsequent layers.
[8] proposed an elegant iterative version of the spatial transformer that passes
composed transformation parameters through the network instead of warped
images, preserving image intensities until the final transformation. The same
geometric predictor with a much simpler network architecture can be used in a
recurrent manner, for more accurate alignment.

In this work, we propose a novel extension the “ recurrent/LSTM spatial
co-transformer”, which allows simultaneous transformation of multiple images
to a common pose. Commonly, registration algorithms estimate a warp from
one image (the source) towards another (the target). However, we found that
fine alignment is more easily learnt between images in a common pose. Thus,
we simultaneously co-align pairs of MR/US images to a common atlas-space
(Sect. 2.6), which will also facilitate future computational image analysis.

Additionally, we propose an LSTM-based parameter prediction network
(Fig. 2) and a temporally varying loss function (Sect. 2.5) for more accurate
alignments.

2.2 Recurrent Spatial Co-transformer

The recurrent spatial co-transformer consists of three main components: (1) the
warper, (2) the residual parameter prediction network and (3) the composer. The
first component, the warper, is the computational machinery needed to trans-
form an image and does not contain any learnable parameters. For simplicity of
discourse, we treat this as a single function fwarp and refer the reader to [6] for
a detailed description of grid transformation and differentiable interpolation.
The second component, the parameter prediction network, fpredict, predicts
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residual transformations conditioned on the current warped output images.
Finally, the third component, the composer, updates the transformation esti-
mates. The recurrent spatial co-transformer iterates between three steps, which
will now be described in more detail.

Step 1 - Image Warping. For iteration t, Let I = (I0, I1, . . . , IN ) denote
an N -tuple of input images, Θt = (θ0t , θ1t , . . . , θN

t ) denote an N -tuple of cor-
responding transformation estimates and Ot = (O0

t , O1
t , . . . , ON

t ) denote an
N -tuple of corresponding warped output images. Then each input image Ii is
first warped independently given its last transformation estimate θi

t−1

Oi
t−1 = fwarp(Ii, G, θi

t−1) ∀i ∈ [1, . . . , N ]. (1)

Here, G = [g1, . . . ,gg] ∈ R
4×g is a matrix of homogeneous grid coordinates.

Step 2 - Residual Parameter Prediction. Warped images Ot−1 are con-
catenated along the channel axis and passed as a single tensor to fpredict which
simultaneously predicts an N -tuple of corresponding residual transformations
Δt = (δ0t , δ1t , . . . , δN

t )

Δt = fpredict(O0
t−1

�O1
t−1

� . . . �ON
t−1). (2)

fpredict can take any form but typically consists of a feed-forward network with
several interleaved convolutional and max pooling layers followed by a fully con-
nected layer and a final fully connected regression layer with the number of units
equalling the number of model parameters.

Step 3 - Parameter Composition. Finally, each transformation estimate
θi

t−1, is composed with its residual transformation estimate δi
t, yielding a new

transformation estimate θi
t

θi
t = fupdate(θi

t−1, δi
t) ∀i ∈ [1, . . . , N ]. (3)

The composition function fupdate will vary depending on the transformation
model. For example, if θ parametrises a homogeneous transformation matrix,
fupdate would be matrix multiplication.

2.3 LSTM Spatial Co-transformer

For more accurate parameter prediction, we propose an LSTM network architec-
ture for fpredict. LSTMs are an extremely powerful network architecture capable
of storing information in a cell state allowing them to learn long term depen-
dencies in sequential data much better than recurrent neural networks. For this
we modify the prediction function fpredict (Eq. 2) so that it now takes a feature
vector xt, and a cell state vector ct

Δt = fpredict(xt, ct), where xt = fextract(O0
t−1

�O1
t−1

� . . . �ON
t−1). (4)

Here fextract is a function that extracts the feature vector xt from the con-
catenation of the output images, O0

t−1
�O1

t−1
� . . . �ON

t−1. For this, we chose a
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neural network with a series of convolutions and max pooling operations fol-
lowed by a flattening procedure (see Fig. 2 for a schematic, however any network
architecture may be used that produces a vector). At each iteration t, the cell
state ct is updated by a linear blend of the previous cell state ct−1 and a vector
of candidate values c̃t [3]

ct = ft � ct−1 + (1 − ft) � c̃t. (5)

Here, � is the Hadamard or element-wise product and ft is the forget mask,
a real valued vector that determines which information is forgotten from the
cell state and which candidate values are added. We define ft as the result of
a single function fforget that takes the extracted feature vector xt and also the
previous cell state ct−1. We implement both the forget and candidate functions
as a sequence of two dense layers with weight matrices Wf1, Wf2 and Wc1,
Wc2, respectively

ft = fforget(ct−1, xt) = σ(Wf2 .max(Wf1 . [ct−1, xt] , 0)), (6)

c̃t = fcandidate(ct−1, xt) = tanh(Wc2 .max(Wc1 . [ct−1, xt] , 0)). (7)

Fig. 2. LSTM parameter prediction architecture for rigid alignment of MR/US images.
The image feature extractor encodes a dual-channel image as a vector that is passed
into an LSTM network which predicts a residual transformation. Fourteen parameters
are predicted: three for rotation, three for translation and one for isotropic scale, per
modality (note, weights for scaling are shared between modalities).

2.4 Rigid Parameter Prediction

For rigid coalignment, our network predicts seven residual update parameters
per image: an isotropic log scaling s, three rotation parameters rx, ry, rz and
three translation parameters tx, ty, tz. Here, [rx, ry, rz] gives an axis of rota-
tion, while φ = ‖[rx, ry, rz]‖2, gives the angle of rotation. Note, weights are
shared between images for scaling parameters. Our transformation parameters
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now become rigid transformation matrices δt = Mδ
t , θt = Mt. Note, for simplic-

ity, transformations M are applied to the target grid G before resampling, i.e.
the inverse transformation. For consistency, we define Mδ as the inverse update
and (Mδ)−1 as the forward update. Learning a series of forward update transfor-
mations is inherently easier for the network, thus we post-multiply the current
transformation matrix by the residual matrix, M ← MMδ. This is equivalent
to updating the forward transformation as follows M−1 ← (Mδ)−1M−1. The
forward update transformation is composed as a translation, followed by a rota-
tion, followed by an isotropic rescaling, (Mδ)−1 = SRT. In practice, we predict
the inverse of the update directly by reversing the composition and inverting the
operations Mδ = T−1R−1S−1.

2.5 Training and Loss Function

Let X = {I0, I1, . . . , In} denote a training set of n aligned image tuples. Images
in the training set are initially aligned to a common pose (in our case we affinely
align our MR and US images to a dual-modality atlas, see Sect. 2.6). For each
training iteration, an image tuple is selected I = (I0, I1, . . . , IN ) and each
image Ii is transformed by a randomly generated matrix Di, before being fed
into the network. Di incorporates an affine augmentation (shared across the
input tuple) and an initial rigid disorientation. For augmentation, we randomly
sample and compose a shearing, an anisotropic scaling and an isotropic scaling.
For disorientation, we compose a random rotation and translation. Crucially, the
use of a recurrent network allows us to back-propagate errors through time. We
took advantage of this by designing a temporally varying loss function comprising
of a relative and an absolute term, which allows our network to learn a long term
strategy for alignment. For k alignment iterations of N images, we define our
loss

L =
N∑

i=1

k∑

t=1

d(Mi
t D

i)/d(Mi
t−1 Di) + λ

t

k
d(Mi

t D
i). (8)

Here, d is a distance function of a transformation matrix from the identity and λ
is a weighting between the loss terms. The first loss term rescales distance errors
d(Mi

t D
i), relative to the previous distance error, d(Mi

t−1 Di). This encour-
ages the network to learn fine alignments and convergence. Note, d(Mi

t−1 Di) is
treated as a constant here. The second term penalises the absolute error with
increasing weight, encouraging initial exploration but still penalising poor final
alignments. The distance function d(M) is computed by first decomposing matrix
M into a isotropic scale s, a translation vector t and a rotation matrix R. We
then compute d(M) as a sum of separate distance measures for each of these
components

d(M) = dscale(s) + drotate(R) + dtranslate(t), where dtranslate(t) = ‖t‖2 ,

dscale(s) = μ |log(s)| and drotate(R) =
1
g

g∑

i=1

‖gi − Rgi‖2 . (9)
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Here, μ weights dscale relative to the other two distance measures. Rota-
tion distance, drotate, is given by the mean distance between transformed grid
points Rgi and their initial locations gi. This gives a natural weighting between
translation and rotation components.

2.6 Joint Affine MR/US Spatio-Temporal Atlas (Ground Truth)

We followed the approach of [14], by constructing average image intensity tem-
plates for each week of gestation (20–31 weeks), from 166 3D reconstructed
MR/3D US image pairs. A set of templates was constructed for each modality
separately with a final registration step between templates to establish corre-
spondences across modalities. This process comprised of three parts: (1) manual
reorientation (2) age-dependant template bootstrapping and (3) unified tem-
plate bootstrapping. All images were carefully manually reoriented to a standard
pose with the yz plane aligned with the brain midline and the top of the brain
stem centred at the origin. Averaging reoriented image intensities yielded an ini-
tial template estimate which was refined using a bootstrapping procedure. This
involved alternating between two steps: (1) affinely registering images to the cur-
rent template and (2) averaging registered image intensities. The bootstrapping
procedure was then repeated between templates to establish correspondences
across time. MR templates were constructed first, allowing us to fix the shearing
and scaling parameters for US template construction. For US registration, we
restrict the optimisation to three degrees of freedom, rotation around x, and
translation along y and z, thus respecting the manual definition of the mid-
line. With additional masking, this allowed robust registration of US images for
template construction using [10].

3 Results and Discussion

3.1 Alignment Error

To demonstrate the accuracy of our method (LSTM ST) we compute registration
errors with respect to two ground truth alignments: the first, derived from our
spatio-temporal atlas and the second, derived from anatomical landmarks picked
by clinical experts (fourteen per image), which offers an unbiased alternative.
For comparison, two image similarity-based registration methods were chosen,
NMI with block-matching (NMI+MI) [10] and self-similarity context descriptors
with discrete optimisation (SSC+DO) [5]. Both of these methods were developed
for robust registration and have been used for multi-modality registration tasks
previously. To compare the accuracy of the methods and also their ability to
register highly misaligned images, we created three test sets with different ranges
of disorientation: [3–5◦, 3–5mm], [30–60◦, 10–20mm] and [90–180◦, 30–50mm].

As we can see from Table 1 our method outperforms both similarity-based
methods for all disorientation levels and both ground truth datasets. Further-
more, our method converges to the same alignment for each image pair, irre-
spective of initial orientation and positioning, which explains the very similar
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mean errors seen for the three disorientation levels. Conversely, similarity-based
methods failed to register images for higher levels of disorientation. All pairs
of images registered by our method were visually inspected and a reasonable
alignment was found in all cases (see Fig. 3 for example alignments). The worst

Table 1. Mean alignment error. Mean rotation and translation errors over our test
set are shown for three automated registration methods, relative to two ground truth
alignments.

(a) Atlas-based ground truth alignment

Disorientation NMI+BM SSC+DO LSTM ST

3–5◦ 3–5mm 23.00◦ 3.49mm 4.08◦ 1.01mm 2.97◦ 0.63mm

30–60◦ 10–20mm 42.11◦ 5.26mm 36.62◦ 3.97mm 2.94◦ 0.63mm

90–180◦ 30–50mm 131.25◦ 9.18mm 129.74◦ 13.01mm 2.91◦ 0.62mm

(b) Landmark-based ground truth alignment

Disorientation NMI+BM SSC+DO LSTM ST

3–5◦ 3–5mm 23.84◦ 3.57mm 5.49◦ 1.73mm 4.06◦ 1.60mm

30–60◦ 10–20mm 42.58◦ 5.22mm 35.16◦ 4.11mm 4.03◦ 1.60mm

90–180◦ 30–50mm 131.70◦ 8.98mm 131.28◦ 11.68mm 4.03◦ 1.60mm

Fig. 3. Median (blue) and 95th percentile (red) alignments by rotation error for
SSC+DO and LSTM ST. Alignments for other methods are shown for comparison.
Each column shows the same MR image for a subject from our test set with its corre-
sponding US image thresholded, colour-mapped, overlayed and aligned, by each of the
automated methods. (Color figure online)
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Fig. 4. Template sharpness. Templates are constructed by averaging image intensities
for US images registered to an MR template via their corresponding MR images (see
Sect. 3.2). Higher Variance of the Laplacian (VAR) indicates sharper templates and
better registration accuracy, while higher Peak Signal-to-Noise Ratio (PSNR) indicates
greater similarity with the atlas ground truth template.

rotation and translation errors seen were 7.9◦ and 1.8mm respectively, showing
our method is relatively robust.

3.2 Mean Templates

We construct US mean templates by first registering each US image to its corre-
sponding MR image, rigidly, then affinely transforming the image pair to the MR
atlas space and finally averaging the intensities for all transformed US images.
If registration between modalities is accurate, then the constructed US template
should be crisp. To evaluate the constructed templates, we compute two mea-
sures, Peak Signal-to-Noise Ratio (PSNR) with respect to our ground truth US
template (Sect. 2.6) and the Variance of the image Laplacian (VAR), which pro-
vides an unbiased measure of sharpness [11]. Figure 4 shows that our method
produces the sharpest template as measured by VAR and also has the highest
PNSR. Furthermore, templates for our method have the same sharpness for any
level of initial disorientation.

4 Conclusion

In this work, we proposed the LSTM spatial co-transformer, a deep learning-
based method for group-wise registration of images to a standard pose.
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We applied this to the challenging task of fetal MR/US brain image registration.
Our method automatically coaligns brain images with a dual-modality spatio-
temporal atlas, where future computational image analysis may be performed.
Our results show that our method registers images more accurately than state-
of-the-art similarity-based registration method “self-similarity context descrip-
tors” [5]. Furthermore, it is able to robustly register highly misaligned images,
where similarity-based will fail.
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