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Abstract. Ultrasound (US), a standard diagnostic tool to detect fetal
abnormalities, is a direction dependent imaging modality, i.e. the posi-
tion of the probe highly influences the appearance of the image. View-
dependent artifacts such as shadows can obstruct parts of the anatomy of
interest and degrade the quality and usefulness of the image. If multiple
images of the same structure are acquired from different views, view-
dependent artifacts can be minimized.

In this work, we propose a new US image reconstruction technique
using multiple B-spline grids to enable multi-view US image compound-
ing. The B-spline coefficients of different control point grids adapted to
the geometry of the data are simultaneously optimized at every resolu-
tion level. Data points are weighted depending on their view, position and
intensity. We demonstrate our method on the compounding of co-planar
2D fetal US images acquired from multiple views. Using quantitative
and qualitative evaluation scores, we show that the proposed method
outperforms other multi-view compounding methods.

1 Introduction

Ultrasound (US) is an imaging technique using high-frequency sound waves to
visualize soft tissues and organs inside the body. US is used as a routine diag-
nostic tool to detect fetal abnormalities. The diagnostic value of US images is
limited by the expertise of the operator and the image quality. View-dependent
artifacts such as shadows can obstruct parts of the anatomy of interest and
degrade the quality and usefulness of the image.

The position of the probe highly influences the appearance of the image. Focal
depth is typically set such that the center of the image achieves higher quality.
Some of the most degrading artifacts are acoustic shadows (Fig. 1(a)/(b)), which
obscure regions of the image, and changes in pixel intensity with depth due to
tissue attenuation, which cannot always be compensated for using time gain
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(a) (b) (c)

Fig. 1. (a)/(b) US images from different view directions with shadow artifacts; (c)
co-planar alignment of both views, which are acquired with two active transducers.

compensation (TGC) accurately. If multiple images of the same structure are
acquired from different views, view-dependent artifacts can be minimized. This
can yield an easier and improved delineation of the detailed fetal anatomy by
the sonographers.

Previous work has focused on compounding of multi-view 3D volumes, where
there is some overlap of the fields of view (FoV) [1–3]. However, 2D imaging
provides better image quality and higher frame rate and is the main imaging
mode in fetal screening protocols. But obtaining a coincident imaging plane for
multi-view compounding with a freehand 2D transducer is nearly impossible in
practice.

In this work, we focus on the compounding of fetal 2D multi-view US images.
To this end, we use a custom-made modification to a standard ultrasound system
to connect two active transducers, and a physical device to maintain them on
the same imaging plane, see Fig. 1(c).

To compound the multi-view images, we propose a new B-spline based [4]
image reconstruction method. Due to the lack of a ground truth, different com-
pounding methods were compared and rated qualitatively by experts, indicating
a higher image quality when using multiple polar grids and a data point weight-
ing.

Our main contributions are three-fold. First, we define multiple, view-
dependent B-spline grids, adapted to the intrinsic polar geometry of US images.
The US signal is measured in a polar coordinate system and only afterwards
scan converted to Cartesian coordinates and interpolated for visualization. To
obtain a single multi-view image, the B-spline coefficients of the grids are then
determined simultaneously. Second, we introduce a data point weighting in the
B-spline formulation based on the position (not only on the beam angles as in [5])
and on the intensities. And third, we evaluate our method on a dataset of 2D
fetal US images acquired from multiple co-planar views.
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2 Methods

2.1 Classical B-Spline Approximation

Let X = {xn}Nn=1 ∈ Ω ⊂ R2 with xn = (xn, yn) be a set of N image sampling
points and f = fn ∈ R corresponding image intensities. The aim is to find
a function S(x) such that S(xn) ≈ fn. Using B-splines, this function can be
expressed as

S(x;w) =
∑

p,q

β(
x

a
− p)β(

y

b
− q)wp,q,

where p, q are the indices of the grid control points, wp,q their coefficients, a, b
the grid spacings along x- and y-direction with grid size Np×Nq, and β(·) is the
B-spline basis function of degree d. Now, one has to find the coefficient vector
w∗ = (wp,q) such that

w∗ = argmin
w

∑

n

‖ S(xn;w) − fn ‖2 +λR(S(x;w)),

where R is a regularization term and λ ∈ R a weighting parameter accounting
for the trade-off between the reconstruction accuracy and the smoothness of the
function S.

For each point xn, the B-spline expansion S can be expressed in matrix form
as S(xn) = Bnw with Bn = [b0,0(xn) b0,1(xn) . . . bNp,Nq (xn)] ∈ RNp·Nq

and
bp,q = β(xa − p)β(yb − q). For all image points, this can be written as f = Bw,
where the nth row of B ∈ RN×(Np·Nq) is Bn, corresponding to image point xn.
The coefficient vector w∗ is then calculated by [6]

w∗ = (BTB + λR)−1BT f . (1)

A widely used strategy, adopted in this work, is to compute the B-spline
expansion on multiple resolution levels l = 0, . . . , L [4]. On the coarsest level
l = 0, the function Sl is approximating the image intensities f . On all subsequent
levels l > 0, Sl(xn) is fitted against the residual rn = fn − (

∑L
l=1 Sl(xn)). The

coefficients for each level are summed up for the final B-spline reconstruction.

2.2 Data Point Weighting Scheme

The contribution of each image point n can be weighted by a scalar cn ∈ R+,∑
n cn = N . By arranging these weights in the diagonal of a weight matrix

C ∈ RNp·Nq × RNp·Nq , the weights can be incorporated into Eq. (1) as

w∗ = (BTCB + λR)−1BTCf . (2)

Our proposed weighting scheme is motivated by the widely used maximum
compounding technique, where for the fusion of two images always the pixel value
with maximum intensity is selected. Therefore, the weights in Eq. (2) are chosen
such that data points with a strong signal have higher weights: cn = N∑N

i fi
fn.
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Additionally, we propose to take into account the position of a data point in the
image. At acquisition time, image settings are optimized to get the best quality
in the center, where the object of interest will be. We formulate the weight of
data point xn as a function of the depth with respect to the probe position
b ∈ R2 and the beam angle αn ∈ R:

gn = g(xn, αn,b) =
1
2π

exp
(

−
(‖ xn − b ‖2

2σ2
1

+
αn

2σ2
2

))

cn =
N

∑N
i gifi

gnfn

(3)

with standard deviations σ1, σ2 ∈ R. Using the Gaussian kernel g(xn, αn,b), a
higher weight is given to data points closer to the transducer and with small
beam angles. σ1 and σ2 were chosen to get high weights at the center of the
image.

2.3 Multi-view Image Reconstruction

The matrix formulation of the B-spline approximation problem is convenient for
the incorporation of multiple grids of different geometry.

Particularly, we propose to use multiple polar B-spline grids, which are
adapted to the US acquisition geometry. Single polar grids have been used before
for example for cardiac US registration [7]. Polar coordinates (r,θ) can be param-
eterized as x ∈ R2,x = (x, y)T : x = r sin(θ) and y = r cos(θ).

US images from different views do not share the same polar coordinate sys-
tem. To account for this, we propose to use a separate grid for each view (as
illustrated in Fig. 2(b)/(c) for two views) and optimize the coefficients of all grids
simultaneously at each resolution level.

C1(a) (b) C2 (c) P2

Fig. 2. Geometry of control point grids. (a) C1, single uniform (Cartesian) grid; (b)
C2, two uniform (Cartesian) grids; (c) P2, two polar grids.

We consider T US views of the same object, acquired from different direc-
tions. The spatial transformations φt : R2 → R2, t = 1, . . . , T , align the T
views. Those transformations can be obtained for example using image registra-
tion, tracker information or are known a priori due to special system settings.
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At resolution level l, we construct T B-spline matrices Bt, t = 1, . . . , T , with
Bt = [b0,0(φt(xn)) b0,1(φt(xn)) . . . bNp

t ,N
q
t
(φt(xn))] ∈ RNt . Here, Nt = Np

t · Nq
t

is the number of control points for view t with grid size Np
t × Nq

t . For each
view, a separate coefficient vector wt ∈ RNt has to be calculated. This is
done by concatenating the Bt’s to a single matrix B ∈ RN×(N1+N2+···+NT )

as B = [B1 B2 · · · BT ].
With the regularization matrix R ∈ R(N1+N2+···+NT )×(N1+N2+···+NT )

R =

⎛

⎜⎜⎜⎝

R1 0 . . . 0
0 R2

. . . 0
0 0 RT

⎞

⎟⎟⎟⎠ ,

Equation (1) is solved and the coefficient vectors wt are optimized simultane-
ously.

3 Materials and Experiments

3.1 Data Acquisition

We use a custom-made US signal multiplexer which allows to connect multiple
US transducers to a standard US system, and switches rapidly between them so
that images from each transducer are acquired alternatively. If the frame rate
is high (as is generally in 2D mode, typically > 20 Hz), the images from both
transducers are acquired nearly at the same time. We use a physical device that
keeps the transducers’ imaging planes co-planar and that ensures a large overlap
in the center of the images to capture the region of interest from two different
view angles (see Figs. 1 and 2). The relative position of the images is constant and
known by calibration. If fetal motion occurred during the alternating transducer
switch, images were discarded. 25 image pairs from five patients (gestational age
20–30w) were acquired using a Philips EPIQ 7g and two x6-1 transducers in 2D
mode.

US images are acquired in polar coordinates. As a post-processing step, the
recorded US signals are scan converted to a Cartesian coordinate system and
spatially interpolated to form a 2D image. We use the scan converted but not
interpolated data as input to our method to reduce interpolation artifacts.

3.2 Experiments

B-Spline Fitting Using Data Geometry. We evaluated the effect of using
control point grids of different geometry for B-spline fitting of single views
(Cartesian vs. polar). For a fair comparison, we ensured that the spacing of
the grid points is similar in the center of the image. The grid spacing of the last
and finest resolution level was 0.89 × 1.23mm for the Cartesian grid and for the
polar grid 0.89 × 0.22mm (close to the probe), 0.89 × 1.01mm (center of image)
and 0.89 × 1.77mm (furthest to the transducer).
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Multi-view Image Compounding. We compared different multi-view B-
spline reconstructions. The methods differ in the number of control point grids,
T (see Sect. 2.3), the geometry of the grids and the data point weighting. We
compared the following grid (compare Fig. 2) and weighting configurations:

– C1: A single uniform (Cartesian) grid of control points (Fig. 2(a)).
– C2: Two uniform (Cartesian) grids of control points transformed rigidly

according to the alignment of the two views (Fig. 2(b)).
– P2: Two polar grids of control points transformed rigidly according to the

alignment of the two views (Fig. 2(c)).
– W0: No data point weighting.
– W1: Data point weighting according to Eq. (3).

Accordingly, the method C1W0 denotes a B-spline fitting with a single Cartesian
grid and without data point weighting. In total, six methods are compared.

3.3 Evaluation

Quantitative Evaluation. We selected four complementary quality measures
to compare reconstructions I to a reference image J (available only for the
first experiment): the Mean Square Error (MSE, compares the intensities of two
images), the Peak Signal to Noise Ratio (PSNR, accesses the noise level of an
image w.r.t. a reference image), the Structural Similarity Index (SSIM, compares
structural information, such as luminance and contrast [8]), and the Variance
of the Laplacian (VarL, estimates the amount of blur in an image [9]). Given
two images I, J ∈ RM1×M2 , the measures MSE, PSNR, SSIM and VarL are
defined as:

MSE(I, J) =
1

M1M2

M1∑

i=1

M2∑

j=1

(I(i, j) − J(i, j))2,

PSNR(I, J) = 10 log10

(
max(I)

MSE(I, J)

)
,

SSIM(I, J) =
(2μIμJ + c1)(2σIJ + c2)

(μ2
I + μ2

J + c1)(σ2
I + σ2

J + c2)
,

VarL(I) =
M1∑

i=1

M2∑

j=1

(|L(i, j)| − L̄)2,

where μI , μJ , σI , σJ , σIJ ∈ R are the means, standard deviation and cross-
covariance for images I, J , c1, c2 ∈ R small constants close to zero, L ∈ RM1×M2

the Laplacian image of I and L̄ = 1
M1M2

∑M1
i=1

∑M2
j=1 |L(i, j)|.

Qualitative Evaluation. No ground truth is available for the compounding of
multiple views and only VarL scores can be computed. Therefore, we addition-
ally designed a qualitative evaluation strategy. We asked seven experts (three
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clinical and four US engineering experts) to evaluate as follows: at a time, two
compounded images obtained by different methods from the same image pair
are presented to the rater and he/she has to select which one is best, or if they
have equal quality. Each rater selects from a different randomization of the six
methods. The result is a quality score Q for each method, that indicates how
often (in %) a method was selected as best, when it was presented to the rater
as part of an image pair. No instructions were given to the experts on which fea-
tures of the image to concentrate on for the quality rating. Inter-rater variability
between those two groups was measured using Pearson’s r.

4 Results

4.1 B-Spline Fitting Using Data Geometry

Table 1 shows the results when reconstructing US images using the classical
B-spline fitting scheme in Eq. (1) with Cartesian and polar grids. MSE, PSNR
and SSIM values are computed using the original scan converted and interpo-
lated images as reference. Using geometry-adapted (polar) grids, lower MSE and
higher PSNR, SSIM and ValL values are obtained suggesting higher quality in
the reconstructions compared with Cartesian grids.

Table 1. Mean square error (MSE), Peak Signal to Nose Ratio (PSNR), Structural
Similarity Index (SSIM) and Variance of Laplacian (VarL) of B-spline reconstructions
with single Cartesian and polar grids.

MSE PSNR SSIM VarL

Cartesian 395.62 ± 143.30 22.44 ± 1.44 0.76 ± 0.03 113.35 ± 48.05

Polar 238.99± 162.24 25.01± 2.13 0.78± 0.05 139.24± 51.10

4.2 Multi-view Image Compounding

Table 2 reports the VarL values and Q-scores on the six different methods
described in Sect. 3. It can be seen, that P2W1 (two view-dependent polar grids

Table 2. Evaluation of multi-view B-spline reconstructions using the Variance of Lapla-
cian (VarL) and a qualitative Q-score obtained by the rating procedure explained in
Sect. 3.2. C1: cartesian with one grid; C2: cartesian with two grids; P2: polar with two
grids; W0: no weighting; W1: weighting as detailed in Eq. (3).

C1W0 C1W1 C2W0 C2W1 P2W0 P2W1

VarL 48.6 ± 12.4 93.7 ± 17.4 53.9 ± 14.5 94.9 ± 20.4 92.0 ± 28.1 139.7± 33.6

Q 4.0 26.9 24.6 54.9 71.4 96.0
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with data point weighting) received the highest score of Q = 96, i.e. the image
obtained by P2W1 was chosen best in 96% of the cases. The “second best”
method was P2W0 with Q = 70.7, further demonstrating the importance of the
geometry-adapted grids to the final result. This is also reflected in the VarL val-
ues. High values, indicating sharper images, are obtained for P2W0 and P2W1.
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Fig. 3. (a)–(d) Original images of the two views; (e)/(g) compounded image with two
polar grids, without data point weighting; (f)/(h) compounded image with two polar
grids and data point weighting according to Eq. (3). (Color figure online)
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For all grid configurations, the weighting improved both the ValL and Q-
scores. While the best ValL values are achieved with all three grid configurations
with data point weighting (C1W1: 93.7±17.4, C2W1: 94.0±20.4, P2W1: 139.7±
33.6), the highest Q scores are obtained with the polar grid configuration.

Overall, the inter-rater variability between all raters was low. The correlation
measured with Pearson’s r is r = 0.93 for all experts, when comparing how
often each expert selected a specific method as best. The variability when only
considering the US engineers was higher (r = 0.89) than considering only the
clinical experts (r = 0.95).

Two examples for the multi-view image compounding are shown in Fig. 3.
By combining two views, shadow artifacts are reduced and the field-of-view is
extended. By incorporating the data point weighting, artifacts due to varying
intensities in both views are reduced (red arrows in Fig. 3 (e)–(h))). Those arti-
facts were, next to contrast and sharpness of image features, the main aspects
the majority of the experts concentrated on for the quality assessment.

5 Discussion and Conclusions

We proposed a method for multi-view US image compounding, that uses multiple
geometry-adapted B-spline grids that are simultaneously optimized at multiple
levels. Furthermore, we introduced a data point weighting for reducing artifacts
arising from different signal intensities in multiple views. Our results on co-planar
US image pairs (acquired with two transducers simultaneously and held in the
same plane) show that using adapted grids and our proposed weighting system
yields better results qualitatively and quantitatively.

Due to the lack of a ground truth for compounded 2D US images, we designed
a rating procedure evaluating the quality of the images by experts. There is some
disagreement between the VarL scores and the quality rating Q score regarding
the different grid and weighting configurations. This raises the question what
makes out a good compounding of two US views. The sharpness or blurring, as
measured by VarL, is not sufficient to rate the quality of compounding.

Motion was disregarded in our study because by using a rigid physical device,
we can ensure that the images are co-planar and the transformation for aligning
them is known a priori. However, fetal motion can occur in the small time gap
between image acquisition from two transducers. For future work, we plan to
incorporate a registration step in our framework to correct for fetal motion.

It is straightforward to generalize our framework to 3D. However, in the
real-time 3D mode the frame rate decreases significantly and the assumption of
no motion between the two transducer acquisitions does not hold anymore. A
registration step becomes inevitable.

The proposed method is not restricted to B-splines for interpolation, and
other gridded functions such as Gaussian functions are also possible. The ability
to perform multi-view image reconstruction opens several possibilities, for exam-
ple further reduction of acoustic shadows or other artifacts, or the inclusion of
the orientation as additional dimension for image representation [2].
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