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Abstract. Alzheimer’s disease (AD) is the only major cause of mortality in the
world without an effective disease modifying treatment. Evidence supporting the
so called “disconnection hypothesis” suggests that functional connectivity
biomarkers may have clinical potential for early detection of AD. However,
known issues with low test-retest reliability and signal to noise in functional
connectivity may prevent accuracy and subsequent predictive capacity. We
validate the utility of a novel principal component based diagnostic identifia-
bility framework to increase separation in functional connectivity across the
Alzheimer’s spectrum by identifying and reconstructing FC using only AD
sensitive components or connectivity modes. We show that this framework
(1) increases test-retest correspondence and (2) allows for better separation, in
functional connectivity, of diagnostic groups both at the whole brain and indi-
vidual resting state network level. Finally, we evaluate a posteriori the associ-
ation between connectivity mode weights with longitudinal neurocognitive
outcomes.
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1 Introduction

Developing biomarkers for early detection of Alzheimer’s disease (AD) is of critical
importance as researchers believe clinical trial failures are in part due to testing of
therapeutic agents too late in the disease [1]. The AD disconnection syndrome
hypothesis [2] posits that AD spreads via propagation of dysfunctional signaling,
indicating that functional connectivity (FC) biomarkers have potential for early
detection. Despite this potential, known issues with high amounts of variability in
acquisition and preprocessing of resting state fMRI, and ultimately low disease-related
signal to noise ratio in FC [3], remain a critical barrier to incorporating FC as a clinical
biomarker of AD. Recent work validated the utility of group level principal component
analysis (PCA) to denoise FC by reconstructing subject level FC using PCs which
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optimized test-retest reliability through a measurement denominated differential iden-
tifiability [4]. Building on this work, we expand the utility of the framework to increase
separation across diagnostic groups in the AD spectrum by reconstructing individual
FC using AD sensitive PCs. We identify AD sensitive PCs using a novel diagnostic
identifiability metric (D). We evaluate the proposed method with data from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI2/GO) using group balanced, boot-
strapped random sampling.

2 Methods

2.1 Subject Demographics

Of the original 200 ADNI2/GO individuals with resting state fMRI scans, subjects were
excluded if they (1) had only extended resting state scans, (2) had no Amyloid status
provided, (3) were cognitively impaired, but Amyloid-beta protein negative (Ab−)
negative, and/or had (4) over 30% of fMRI time points censored (see Sect. 2.2). The
final sample included 82 individuals. Only Ab positive (Ab+) individuals were included
in cognitively impaired groups to avoid confounding by non-AD neurodegenerative
pathologies. Subjects were sorted into 5 diagnostic groups using criterion from
ADNI2/GO and Ab positivity: (1) normal controls (CNAß−, n = 15), (2) pre-clinical AD
(CNAß+, n = 12), (3) early mild cognitive impairment (EMCIAß+, n = 22), (4) late mild
cognitive impairment (LMCIAß+, n = 12), and (5) dementia (ADAß+, n = 21). Ab status
was determined using either mean PET standard uptake value ratio cutoff (Florbe-
tapir > 1.1, University of Berkley) or CSF Aß levels [5]. Composite scores were cal-
culated for visuospatial, memory, executive function, and language domains [6] from
the ANDI2/GO battery. No demographic group effects were observed. All neurocog-
nitive domain scores exhibited a significant group effect (Table 1).

Table 1. Demographics and neurocognitive comparisons of diagnostic groups.

Variable CNAß−

(n = 14)
CNAß+

(n = 12)
EMCIAß+
(n = 22)

LMCIAß+
(n = 13)

ADAß+

(n = 21)

Age (Years) (SD) 74.2 (8.8) 75.9 (7.0) 72.6 (5.2) 73.3 (6.1) 73.5 (7.6)
Sex (% F) 64.2 41.7 50 61.6 42.9
Years of education (SD) 16.7 (2.3) 15.8 (2.6) 15.2 (2.6) 16 (1.8) 15.4 (2.6)

Visuospatial domain score
(SD)**

9.7 (0.61) 9.3 (0.9) 9.4 (0.9) 83 (2.3) 7.4 (2.1)

Language domain score
(SD)**

49.2 (4.2) 48.8 (4.4) 46.2 (5.8) 43.1 (8.0) 34.8 (9.6)

Memory domain score (SD)** 125.4 (41.1) 142 (34.5) 104.9 (46.6) 81.0 (36.7) 34.2 (21.8)
Executive function domain
score (SD)**

99.0 (26.8) 117.6 (27.4) 135.0 (48.6) 166.3 (102.0) 284.6 (101.0)

**Significant group effect (Chi-square or ANOVA as appropriate, a = 0.05)
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2.2 fMRI Data Processing

MRI scans used for construction of FC matrices included T1-weighted MPRAGE scans
and EPI fMRI scans from the initial visit in ADNI2/GO (www.adni-info.org for pro-
tocols). fMRI scans were processed in MATLAB using an FSL based pipeline fol-
lowing processing guidelines by Power et al. [7] and described in detail in Amico et al.
[8]. Subjects with over 30% of volumes censored due to motion were discarded to
ensure data quality. For purposes of denoising FC matrices [4], processed fMRI time
series were split into halves, representing “test” and “retest” sessions.

2.3 Test-Retest Identifiability and Construction and of Individual FC
Matrices

For each subject, two FC matrices were created from the “test” and “retest” halves of
the fMRI time-series. FC nodes were defined using a 286 region parcellation [9], as
detailed in Amico et al. [8]. Functional connectivity matrices were derived by calcu-
lating the pairwise Pearson correlation coefficient (rij) between the mean fMRI time-
series of all nodes. “Test” and “retest” FCs were de-noised by using group level PCA to
maximize test-retest differential identifiability (Idiff) [4]. The “identifiability matrix”
I was defined as the matrix of pairwise correlations (square, non-symmetric) between
the subjects’ FCtest and FCretest. The dimension of I is N2, where N is the number of
subjects in the cohort. Self-identifiability, (Iself, Eq. 1), was defined to be the average of
the main diagonal elements of I, consisting of correlations between FCtest and FCretest

from the same subjects. Iothers (Eq. 2), was defined as average of the off-diagonal
elements of matrix I, consisting of correlations between FCtest and FCretest of different
subjects. Differential identifiability (Idiff, Eq. 3) was defined as the difference between
Iself and Iothers.

Iself ¼ 1
N

X

i¼j

Ii;j ð1Þ

Iothers ¼ 1
N

X

i 6¼j

Ii;j ð2Þ

Idiff ¼ 100 � ðIself � IothersÞ ð3Þ

Group level PCA [10] was applied in the FC domain, on a data matrix (Y1)
containing vectorized FCtest and FCretest (upper triangular) from all subjects. PCs
throughout this paper will be numbered in order of variance explained. The number of
PCs estimated was constrained to 2 * N, the rank of the data matrix Y1. Following
decomposition, PCs were iteratively added in order of variance explained. Denoised
FCtest and FCretest matrices were reconstructed using the number of PCs (n) that
maximized Idiff (Eq. 3), while maintaining a minimum Iothers value of 0.4, such that
between-subject FC was neither overly correlated (loss of valid inter-subject vari-
ability) nor overly orthogonal (inter-subject variability dominated by noise). This was
done because the ADNI2/GO fMRI data was noisier than data on which this method
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was previously implemented, as evidenced by a much lower original between-subject
FC correlation (Iothers 0.22 ADNI vs. 0.4 Human Connectome Project rs-fMRI [14]).
Therefore, not setting a minimum threshold for Iothers led to the algorithm picking PCs
that were “specialized” to specific subjects. The threshold 0.4 was specifically chosen
because it reflected average Iothers values seen in FCs from previous data, on which this
method was implemented [4].

Final, de-noised FC matrices were computed as the average of FCtest and FCretest.
Nodes were assigned to 9 resting state subnetworks (RSN/RSNs), visual (VIS),
somato-motor (SM), dorsal attention (DA), ventral attention (VA), limbic (L), fronto-
parietal (FP), and default mode network (DMN) [11] with the additional subcortical
(SUB) and cerebellar (CER).

2.4 Diagnostic Identifiability

With the goal of early detection in mind, we hypothesized that FC in non-dementia
groups would become significantly less identifiable from FC in ADAbþ with increased
diagnostic proximity to ADAbþ . Figure 1 delineates the work flow for finding AD
sensitive PCs using a novel diagnostic identifiability metric (D), which quantifies
differentiability in connectivity between each non-dementia group (g) and ADAbþ and
is calculated from the correlation matrix (I) of Y2. Dg was defined as the average
correlation within a non-dementia group, corr(g, g), minus the average correlation
between that non-dementia group and ADAbþ , corr(g, ADAbþ ). D, rather than variance
explained, was used to filter components, as it was hypothesized that early disease
changes likely do not account for a large portion of between subject variance.

Dg ¼ corr g; gð Þ � corr g;ADAbþ
� � ð4Þ

Group level PCA was again performed on the matrix Y2. Here, the number of PCs
was constrained to n = 35 PCs, the rank of the Y2 matrix. Y2 was iteratively recon-
structed using a subset of the n PCs, selected based on maximizing Dg. Starting with
PC1, PC2…n were iteratively added based on their influence on average (Dg). At each
iteration, the PCj* which most improved mean (Dg) upon its addition to previously
selected PCs, was selected. To avoid results driven by a subset of the population or by
differences in sample sizes between groups, the cohort was randomly sampled 30 times,
following total cohort PCA, in a group balanced fashion (nsample = 50; ng = 10). The
number of bootstraps was chosen to allow adequate estimation of the Dg distribution
while keeping run-time of the algorithm, reasonable. Bootstrapped distributions of Dg

were generated for each number of PCs. The number of PCs (n*) which maximized
average (Dg) was found. AD sensitive PCs were defined as those which appeared
within the n* most influential PCs with the greatest frequency across samples. Final FC
matrices were re-constructed using only AD sensitive PCs.
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n� ¼ n; at argmaxnð1g
X

g

DgÞ ð5Þ

Additionally, Dg curves were estimated and disease sensitive PCs were identified
for the 9 RSNs individually, by calculating IRSN using the subset of connections where
at least one of the nodes in the connection was part of the RSN.

2.5 Statistical Validation and Association with Neurocognitive Outcomes

Due to the small number of bootstraps, differences between Dg distributions were
assessed at n* PCs by checking if the median of one distribution was an outlier relative
to a reference distribution using non-parametric confidence intervals defined with the
median and interquartile range (IQR). First, Dg distributions from each RSN were
compared to those from WB. Next, WB and RSN Dg distributions were compared to a
corresponding null model. Null models for the WB and each RSN were constructed by
randomly permuting diagnostic group membership among individuals selected at each
bootstrap, such that Dg for the null model represented identifiability of a random
heterogeneous group from a random heterogeneous reference group. Finally, individual
D values (Di) were calculated for each subject using FC reconstructed with the n* PCs.
ANOVA (a < 0.05) with follow up pairwise tests, was performed on WB Di distri-
butions to test for a group effect. Stepwise regressions (F-test, a = 0.05), starting with
gender, age and education, were be used to test for associations between the n* PC
weights and longitudinal changes in neurocognitive outcomes (0, 1, 2 years post
imaging).

3 Results

3.1 Test-Retest Identifiability

Figure 2 details the results of denoising FC using differential test-retest differential
identifiability. An optimal reconstruction based on the first n = 35 PCs (in decreasing
order of explained variance) was chosen (Fig. 2A). Iself increased from 0.52 to 0.92

Fig. 1. Diagnostic identifiability workflow.
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(Fig. 2A–B) while Iothers increased from 0.20 to 0.40 (Fig. 2A–B). Idiff increased from
38% to 57% (Fig. 2A–B).

3.2 Diagnostic Identifiability

WB average (Dg) peaked at n* = 11 components which explained 58.82% of the
variance in the denoised FC data (Fig. 3A, Table 2). At n* PCs, LMCIAß+ was the only
group who that did not exhibit significantly increased Dg from the null model. At n*
components, Di distributions exhibited a significant group effect. Di decreased with
diagnostic proximity to ADAß+ (Fig. 3B). Between-subject correlation in FC increased
from 0.41 to 0.71 after reconstruction with n* PCs (Fig. 3B). Of the 9 RSNs, the L
network exhibited significantly greater DRSN as compared to WB (Table 2). Like WB,
LMCIAß+ was the only group that did not exhibit significantly greater RSN Dg than the
null model, with the exceptions of SM where EMCIAß+ was additionally not signifi-
cantly different from the null model and L where all non-dementia groups exhibited
greater Dg than the null model (Table 2). Eight of eleven PCs were identified as disease
sensitive in all 9 RSNs and WB (Table 2).

Four PCs exhibited significant associations with various neurocognitive domain
scores (Table 3). Visuospatial domain scores were associated with PC 17 at 1 year post
imaging and PC 9 at 2 years post imaging. Memory domain scores were associated
with PC 32 at 1 year post imaging and PC 7 at 2 years post imaging. Language domain
scores were associated with PC 23 at 0 year post imaging and PC 7 at 1 years post
imaging. Finally, PC 17 was associated with executive domain scores at 1 and 2 years
post imaging.

Fig. 2. (A) Iself, Iothers, and Idiff across the range of # PCs. (B) I matrices for original and
denoised FC matrices. (C) Example original FC matrix versus denoised FC matrix.
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Fig. 3. (A-left) Whole brain Dg across all possible number of PCs. (A-right) Individual Dg

values at n* = 11 PCs. Distributions showing significant differences (t-test, p < 0.05) are
delineated using lines. (B) Original I matrix versus I matrix reconstructed using disease sensitive
PCs. (C) Example original FC matrix versus FC matrix reconstructed using disease sensitive PCs.

Table 2. Diagnostic identifiability summary.

RSN CNAß− CNAß+ EMCIAß+ LMCIAß+ Mean n Var (%)

WB 11.35** 9.75** 7.85** 2.60 7.89 11 58.82
VIS 13.21** 10.33** 8.11** 2.75 8.60 10 57.23
SM 9.82** 12.96** 7.30 4.43 8.62 10 57.26
DA 12.16** 11.24** 8.09** 3.37 8.71 13 62.19
VA 10.74** 11.65** 7.96** 2.33 8.17 10 57.26
L 17.18** 13.76** 11.97** 6.28** 12.30 8 54.50
FP 12.07** 10.25** 9.34** 2.70 8.59 11 58.82
DMN 12.09** 10.20** 8.39** 2.84 8.38 11 58.82
SUB 14.17** 11.66** 9.93** 4.33 10.02 9 55.78
CER 13.29** 12.85** 9.72** 5.67 10.38 10 57.26

**Median outside CI null model, Median outside CI WB mean (Dg)

Table 3. Associations of n* PC weights with neurocognitive composite domain scores.
Stepwise regressions (F-test, a < 0.05) were used to assess the relationship of neurocognitive
composite domain scores with PC weights, with age, gender, and education starting in the base
model; p values are reported for the whole model, adjusted-R2 is reported for the model.

Time points Visuospatial Memory Language Executive
PC p R2 PC p R2 PC p R2 PC p R2

0 – – – – – – 23 0.040 0.19 – – –

1 17 0.001 0.53 32 0.032 0.31 7 0.025 0.31 17 0.004 0.48
2 9 0.020 0.46 7 0.044 0.20 – – – 17 0.013 0.36
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4 Limitations, Future Work, and Conclusions

We present here a two stage PCA based framework to improve the detection of AD
signatures in whole-brain functional connectivity. We first use recently proposed test-
retest differential identifiability to denoise subject-level functional connectomes and
consequently reduce dimensionality of functional connectomes. We subsequently
introduce and validate the concept of PCA based differential diagnostic identifiability to
increase AD signal to background in functional connectivity. The result of a significant
diagnostic group effect in diagnostic differential identifiability shows that FC contains
AD signature, even at early stages of disease. The finding of increased diagnostic
identifiability in Limbic regions, known to be associated with memory processes and
known to be affected in AD, further validates this finding. Finally, we show that PC
weights from AD sensitive principal components are correlated to longitudinal neu-
rocognitive outcomes. In addition to the work presented here, we plan to delve further
into the meaning of the PCs themselves. AD sensitive PCs did not appear to be specific
to individual RSNs, as the same PCs were consistently AD sensitive across RSNs.
Furthermore, several PCs were associated with multiple neurocognitive domains.
Therefore, AD sensitive PCs may characterize global brain changes related to AD.
However, spatial representation of PCs and relationship of PCs with network properties
need to be explored to further assess this. Finally, to further validate these promising
results, this methodology needs to be applied to a larger cohort. With ADNI3 data
becoming available (*300 subjects already scanned), on which all subjects underwent
resting state fMRI, we will be able to further validate findings and further improve
identification and characterization of AD sensitive PCs based on whole brain functional
connectomes. This dual decomposition/reconstruction framework makes forward pro-
gress in exploiting the clinical potential of functional connectivity based biomarkers.
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