
EARL: Joint Entity and Relation Linking
for Question Answering over Knowledge

Graphs

Mohnish Dubey1,2(B), Debayan Banerjee1,
Debanjan Chaudhuri1,2, and Jens Lehmann1,2

1 Smart Data Analytics Group (SDA), University of Bonn, Bonn, Germany
{dubey,chaudhur,jens.lehmann}@cs.uni-bonn.de, debayan@uni-bonn.de

2 Fraunhofer IAIS, Bonn, Germany
jens.lehmann@iais.fraunhofer.de

Abstract. Many question answering systems over knowledge graphs
rely on entity and relation linking components in order to connect the
natural language input to the underlying knowledge graph. Traditionally,
entity linking and relation linking have been performed either as depen-
dent sequential tasks or as independent parallel tasks. In this paper, we
propose a framework called EARL, which performs entity linking and
relation linking as a joint task. EARL implements two different solution
strategies for which we provide a comparative analysis in this paper:
The first strategy is a formalisation of the joint entity and relation link-
ing tasks as an instance of the Generalised Travelling Salesman Problem
(GTSP). In order to be computationally feasible, we employ approxi-
mate GTSP solvers. The second strategy uses machine learning in order
to exploit the connection density between nodes in the knowledge graph.
It relies on three base features and re-ranking steps in order to predict
entities and relations. We compare the strategies and evaluate them on
a dataset with 5000 questions. Both strategies significantly outperform
the current state-of-the-art approaches for entity and relation linking.

Keywords: Entity linking · Relation linking · GTSP
Question answering

1 Introduction

Question answering over knowledge graphs (KGs) is an active research area con-
cerned with techniques that allow obtaining information from knowledge graphs
based on natural language input. Specifically, Semantic Question Answering
(SQA) as defined in [8] is the task of users asking questions in natural language
(NL) to which they receive a concise answer generated by a formal query over a
KG.

Semantic question answering systems can be a fully rule based systems [4]
or end-to-end machine learning based systems [19]. The main challenges faced
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 108–126, 2018.
https://doi.org/10.1007/978-3-030-00671-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_7&domain=pdf

EARL 109

Fig. 1. An excerpt of the subdivision knowledge graph for the example question “Where
was the founder of Tesla and Space X born?”. Note that both entities and relations are
nodes in the graph.

in SQA are (i) entity identification and linking, (ii) relation identification and
linking, (iii) query intent identification and (iv) formal query generation.

Some QA systems have achieved good performance on simple questions [11],
i.e. those questions which can be answered by linking to at most one relation and
at most one entity in the KG. Recently, the focus has shifted towards complex
questions [30], comprising of multiple entities and relations.

Usually, all entities and relations need to be correctly linked to the knowledge
graph in order to generate the correct formal query and successfully answer
the question of a user. Hence, it is crucial to perform the linking process with
high accuracy and this is a major bottleneck for the widespread adoption of
current SQA systems. In most entity linking systems [12,26], disambiguation is
performed by looking at other entities present in the input text. However, in the
case of natural language questions (short text fragments) the number of other
entities for disambiguation is not high. Therefore, it is potentially beneficial to
consider entity and relation candidates for the input questions in combination,
to maximise the usable evidence for the candidate selection process. To achieve
this, we propose EARL (Entity and Relation Linker), a system for jointly linking
entities and relations in a question to a knowledge graph. EARL treats entity
linking and relation linking as a single task and thus aims to reduce the error
caused by the dependent steps.

EARL uses the knowledge graph to jointly disambiguate entity and relations:
It obtains the context for entity disambiguation by observing the relations sur-
rounding the entity. Similarly, it obtains the context for relation disambiguation
by looking at the surrounding entities. The system supports multiple entities and
relations occurring in complex questions. EARL implements two different solu-
tion strategies: The first strategy is a formalisation of the joint entity and rela-
tion linking tasks as an instance of the Generalised Travelling Salesman Problem
(GTSP). Since the problem is NP-hard, we employ approximate GTSP solvers.
The second strategy uses machine learning in order to exploit the connection
density between nodes in the KG. It relies on three base features and re-ranking
steps in order to predict entities and relations. We compare the strategies and
evaluate them on a dataset with 5000 questions. Both strategies outperform the
current state-of-the-art approaches for entity and relation linking.

110 M. Dubey et al.

Let us consider an example to explain the underlying idea: “Where was the
founder of Tesla and SpaceX born?”. Here, the entity linker needs to perform
disambiguation for the keyword “Tesla” between the scientist “Nikola Tesla”
and the car company “Tesla Motors”. EARL uses all other entities and rela-
tions (SpaceX, founder, born) present in the query. It does this by analysing the
subdivision graph of the knowledge graph fragment containing the candidates
for relevant entities and relations. While performing the joint analysis (Fig. 1),
EARL detects that there is no likely combination of candidates, which supports
the disambiguation of “Tesla” as “Nikola Tesla”, whereas there is a plausible
combination of candidates for the car company “Tesla Motors”.

Overall, our contributions in this paper are as follows:

1. The framework EARL, where GTSP solver or Connection Density can be
used for joint linking of entities and relations (Sect. 4).

2. A formalisation of the joint entity and relation linking problem as an instance
of the Generalised Travelling Salesman (GTSP) problem (Sect. 4.2).

3. An implementation of the GTSP strategy using approximate GTSP solvers.
4. A “Connection Density” formalisation and implementation of the joint entity

and relation linking problem as a machine learning task (Sect. 4.3).
5. An adaptive E/R learning module, which can correct errors occurring across

different modules (Sect. 4.3).
6. A comparative analysis of both strategies - GTSP and connection density

(Table 2).
7. A fully annotated version of the 5000 question LC-QuAD data-set, where

entity and relations are linked to the KG.
8. A large set of labels for DBpedia predicates and entities covering the syntactic

and semantic variations.1

The paper is organised into the following sections: (2) Related Work outlining
some of the major contributions in entity and relation linking used in question
answering; (3) Problem Statement, where we discuss the problem in depth and
our hypotheses for the solution; (4) the architecture of EARL including prepro-
cessing steps followed by (i) a GTSP solver or (ii) a connection density approach;
(5) Evaluation, with various evaluation criteria and results; (6) Discussion; and
(7) Conclusion.

2 Related Work

The entity and relation linking challenge has attracted a wide variety of solutions
over time. Linking natural language phrases to DBpedia resources, Spotlight [12]
breaks down the process of entity spotting into four phases. It identifies the entity
using a list of surface forms and then generates DBpedia resources candidates.
It then disambiguates the entity based on surrounding context. AGDISTIS [26]
follows the inherent structure of the target knowledge base more closely to solve

1 Dataset available at https://github.com/AskNowQA/EARL.

https://github.com/AskNowQA/EARL

EARL 111

Table 1. State of the art for Entity and Relation linking in question answering

Linking

approach

QA system Advantage Disadvantage

Sequential [2,4,21] -Reduces candidate search space

for Relation Linking

-Relation Linking information

cannot be exploited in Entity

Linking process

-Allows schema verification - Errors in Entity Linking

cannot be overcome

Parallel [16,27,28] - Lower runtime - Entity Linking process cannot

use information from Relation

Linking process and vice versa

- Re-ranking of Entities possible

based on Relation Linking

- Does not allow schema

verification

Joint (with

limited

candidate set)

[1,30] - Potentially high accuracy - Complexity increase

- Reduces error propagation - Larger search space

- Better disambiguation

- Allows schema verification

- Allows re-ranking

the problem. Being a graph-based disambiguation system, AGDISTIS performs
disambiguation based on the hop-distance between the candidates for the entities
in a given text, where multiple entities are present. Babelfy [13] uses word sense
disambiguation for entity linking. On the other hand, S-MART [29] is often
appropriated as an entity linking system over Freebase resources. It generates
multiple regression trees and then applies sophisticated structured prediction
techniques to link entities to resources.

As relation linking is generally considered to be a problem-specific task, only
a few general purpose relation linking systems are in use. Iterative bootstrap-
ping strategies for extracting RDF resources from unstructured text have been
explored in BOA [5] and PATTY [15]. It consists of natural language patterns
corresponding to relations present in the knowledge graph. Word embedding
models are also frequently used to overcome the linguistic gap for relation link-
ing. RelMatch [20] improves the accuracy of the PATTY dataset for relation
linking. There are tools such as ReMatch [14] which uses wordnet similarity for
relation linking.

Many QA systems use an out-of-the-box entity linker, often one of the afore-
mentioned ones. These tools are not tailor-made for questions and are instead
trained on large text corpora, typically devoid of questions. This may create sev-
eral problems as questions do not span over more than one sentence, thereby ren-
dering context-based disambiguation relatively ineffective. Further, graph based
systems rely on the presence of multiple entities in the source text and disam-
biguate them based on each other. This becomes difficult when dealing with
questions, as they seldom consist of multiple entity.

Thus, to avoid the issues mentioned, a variety of approaches have been
employed for entity and relation linking for question answering. Semantic parsing-
based systems such as AskNow [4] and TBSL [25] first link the entities and

112 M. Dubey et al.

generate a list of candidate relations based on the identified resources. They
use several string and semantic similarity techniques to finally select the correct
entity and relation candidates for the question. In these systems, the process
of relation linking depends on linking the entities. Generating entity and rela-
tion candidates has also been explored by [30], which uses these candidates to
create staged query graphs, and later re-ranks them based on textual similarity
between the query and the target question, computed by a Siamese architecture-
based neural network. There are some QA systems such as Xser [28], which
performs relation linking independent of entity linking. STAGG [30] takes the
top 10 entities given by the entity linker and tries to build query-subgraph chains
corresponding to the question. This approach considers a ranked list of entity
candidates from the entity linker and chooses the best candidate based on the
query subgraph formed. Generally, semantic parsing based systems treat entity
and relation linking as separate tasks which can be observed in the generalised
pipeline of Frankenstein [21] and OKBQA www.okbqa.org/.

3 Overview and Preliminaries

3.1 Overview and Research Questions

As discussed previously, in question answering the tasks of entity and relation
linking are performed either sequentially or in parallel. In sequential systems,
usually the entity linking task is performed first, followed by relation linking.
As a consequence, information in the relation linking phase cannot be exploited
during entity linking in this case. In parallel systems, entity and relation linking
are performed independently. While this is efficient in terms of runtime per-
formance, the entity linking process cannot benefit from further information
obtained during relation linking and vice versa. We illustrate the advantages
and disadvantages of both approaches, as well as the systems following them, in
Table 1. Our main contribution in this paper is the provision of a system, which
takes candidates for entity and relation linking as input and performs a joint
optimisation selecting the best combination of entity and relation candidates.

Postulates. We have three postulates, which we want to verify based on our
approach:

H1: Given candidate lists of entities and relations from a question, the correct
solution is a cycle of minimal cost that visits exactly one candidate from each
list.
H2: Given candidate lists of entities and relations from a question, the correct
candidates exhibit relatively dense and short-hop connections among them-
selves in the knowledge graph compared to wrong candidate sets.
H3: Jointly linking entity and relation leads to higher accuracy compared to
performing these tasks separately.

We will re-visit all of these postulates in the evaluation section of the paper.

www.okbqa.org/

EARL 113

3.2 Preliminaries

We will first introduce basic notions from graph theory:

Definition 1 (Graph). A (simple, undirected) graph is an ordered pair G =
(V,E) where V is a set whose elements are called vertices and E is a set of pairs
of vertices which is called edges.

Definition 2 (Knowledge Graph). Within the scope of this paper, we define
a knowledge graph as a labelled directed multi-graph. A labelled directed multi-
graph is a tuple KG = (V,E,L) where V is a set called vertices, L is a set of
edge labels and E ⊆ V × L × V is a set of ordered triples.

It should be noted that our definition of knowledge graphs captures basic
aspects of RDF datasets as well as property graphs [6]. The knowledge graph
vertices represent entities and the edges represent relationships between those
entities (Fig. 2).

Definition 3 (Subdivision Graph). The subdivision graph [24] S(G) of a
graph G is the graph obtained from G by replacing each edge e = (u, v) of G by
a new vertex we and 2 new edges (u,we) and (v, we).

Fig. 2. EARL architecture: In the disambiguation phase one may choose either Con-
nection Density or GTSP. In cases where training data is not available beforehand
GTSP works better.

4 EARL

In general, entity linking is a two step process. The first step is to identify
and spot the span of the entity. The second step is to disambiguate or link the
entity to the knowledge graph. For linking, the candidates are generated for the
spotted span of the entity and then the best candidate is chosen for the linking.
These two steps are similarly followed in standard relation linking approaches.
In our approach, we first spot the spans of entities and relations. After that, the
(disambiguation) linking task is performed jointly for both entities and relations.

In this section we first discuss the step of span detection of entity and relation
in natural language question and candidate list generation. We perform the
disambiguation by two different approaches, which are discussed later in this
section.

114 M. Dubey et al.

4.1 Candidate Generation Steps

4.1.1 Shallow Parsing
Given a question, extract all keyword phrases out. EARL uses SENNA [3] as the
keyword extractor. We also remove stop words from the question at this stage.
In example question “Where was the founder of Tesla and SpaceX born?” we
identify <founder, Tesla, SpaceX, born> as our keyword phrases.

4.1.2 E/R Prediction
Once keyword phrases are extracted from the questions, the next step in EARL
is to predict whether each of these is an entity or a relation. We use a character
embedding based long-short term memory network (LSTM) to do the same. The
network is trained using labels for entity and relation in the knowledge graph.
For handling out of vocabulary words [17], and also to encode the knowledge
graph structure in the network, we take a multi-task learning approach with
hard parameter sharing. Our model is trained on a custom loss given by:

E = (1 − α) ∗ EBCE + α ∗ EED (1)

where, EBCE is the binary cross entropy loss for the learning objective of a phrase
being an entity or a relation and EEd is the squared eucledian distance between
the predicted embedding and the correct embedding for that label. The value
of α is empirically selected as 0.25. We use pre-trained label embeddings from
RDF2Vec [18] which are trained on knowledge graphs. RDF2Vec provides latent
representation for entities and relations in RDF graphs. It efficiently captures
the semantic relatedness between entities and relations.

We use a hidden layer size of 128 for the LSTM, followed by two dense layers
of sizes 512 and 256 respectively. A dropout value of 0.5 is used in the dense
layers. The network is trained using Adam optimizer [9] with a learning rate of
0.0001 and a batch size of 128. Going back to the example, this module identifies
“founder” and “born” as relations, “Tesla” and “SpaceX” as entities.

4.1.3 Candidate List Generation
This module retrieves a candidate list for each keyword identified in the nat-
ural language question by the shallow parser. To retrieve the top candidates
for a keyword we create an Elasticsearch2 index of URI-label pairs. Since EARL
requires an exhaustive list of labels for a URI in the knowledge graph, we expand
the labels. We used Wikidata labels for entities which are in same-as relation
in the knowledge base. For relations we require labels which were semantically
equivalent (such as writer, author) for which we took synonyms from the Oxford
Dictionary API3. To cover grammatical variations of a particular label, we added
inflections from fastText4. We avoid any bias held towards or against popular
entities and relations.
2 https://www.elastic.co/products/elasticsearch.
3 https://developer.oxforddictionaries.com/.
4 https://fasttext.cc/.

https://www.elastic.co/products/elasticsearch
https://developer.oxforddictionaries.com/
https://fasttext.cc/

EARL 115

The output of these pre-processing steps are (i) set of keywords from the
question, (ii) every keyword is identified either as relation or entity, (iii) for
every keyword there is a set of candidate URIs from the knowledge graph.

4.2 Using GTSP for Disambiguation

At this point we may use either a GTSP based solution or Connection Density
(later explained in Sect. 4.3) for disambiguation. We start with the formalisation
for GTSP based solution.

The entity and relation linking process can be formalised via spotting and
candidate generation functions as follows: Let S be the set of all strings. We
assume that there is a function spot : S → 2S which maps a string s (the
input question) to a set K of substrings of s. We call this set K the keywords
occurring in our input. Moreover, we assume there is a function candKG : K →
2V ∪L which maps each keyword to a set of candidate node and edge labels
for our knowledge graph G = (V,E,L). The goal of joint entity and relation
linking is to find combinations of candidates, which are closely related. How
closely nodes are related is modelled by a cost function costKG : (V ∪ L) ×
(V ∪ L) → [0, 1]. Lower values indicate closer relationships. According to our
first postulate, we aim to encode graph distances in the cost function to reward
those combinations of entities and relations, which are located close to each other
in the input knowledge graph. To be able to consider distances between both
relations and entities, we transform the knowledge graph into its subdivision
graph (see Definition 3). This subdivision graph allows us to elegantly define the
distance function as illustrated in Fig. 4.

Given the knowledge graph KG and the functions spot, cand and cost, we
can cast the problem of joint entity and relation linking as an instance of the
Generalised Travelling Salesman (GTSP) problem: We construct a graph G with
V =

⋃
k∈K cand(k). Each node set cand(k) is called a cluster in this vertex set.

The GTSP problem is to find a subset V ′ = (v1, . . . , vn) of V which contains
exactly one node from each cluster and the total cost

∑n−1
i=1 cost(vi, vi+1) is

minimal with respect to all such subsets. Please note that in our formalisation
of the GTSP, we do not require V ′ to be a cycle, i.e. v1 and vn can be different.
Moreover, we do not require clusters to be disjoint, i.e. different keywords can
have overlapping candidate sets.

Figure 3 illustrates the problem formulation. Each candidate set for a key-
word forms a cluster in the graph. The weight of each edge in this graph is given
by the cost function, which includes the distance between the nodes in the sub-
division graph of the input knowledge graph as well as the confidence scores of
the candidates. The GTSP requires the solution to visit one element per cluster
and minimises the overall distance.

Approximate GTSP Solvers. In order to solve the joint entity and relation
linking problem, the corresponding GTSP instance needs to be solved. Unfor-
tunately, the GTSP is NP-hard [10] and hence it is intractable. However, since

116 M. Dubey et al.

Fig. 3. Using GTSP for disambiguation: The bold line represents the solution offered
by the GTSP solver. Each edge represents an existing connection in the knowledge
graph. The edge weight is equal to the number of hops between the two nodes in
the knowledge graph. We also add the index search ranks of the two nodes the edges
connect to the edge weight when solving for GTSP.

GTSP can be reduced to standard TSP, several polynomial approximation algo-
rithms exist to solve GTSP. The state-of-the-art approximate GTSP solver is the
Lin–Kernighan–Helsgaun algorithm [7]. Here, a GTSP instance is transformed
into standard asymmetric TSP instances using the Noon-Bean transformation.
It allows the heuristic TSP solver LKH to be used for solving the initial GTSP.
Among LKH’s characteristics, its use of 1-tree approximation for determining a
candidate edge set, the extension of the basic search step, and effective rules for
directing and pruning the search contribute to its efficiency.

While a GTSP based solution would be suitable for solving the joint entity
and relation linking problem, it has the drawback that it can only provide the
best candidate for each keyword given the list of candidates. Most approximate
GTSP solutions do not explore all possible paths and nodes and hence a compre-
hensive scoring and re-ranking of nodes is not possible. Ideally, we would like to
go beyond this and re-rank all candidates for a given keyword. This would open
up new opportunities from a QA perspective, i.e. a user could be presented with
a sorted list of multiple possible answers to select from.

4.3 Using Connection Density for Disambiguation

As discussed earlier, once the candidate list generation is achieved, EARL offers
two independent modules for the entity and relation linking. In the previous
Subsect. 4.2 we discussed one approach using GTSP. In this subsection we will
discuss the second approach for disambiguation using Connection Density, which
works as an alternative to the GTSP approach. We have also compared the two
methods in Table 2.

EARL 117

Table 2. Comparison of GTSP based approach and Connection density for Disam-
biguation

GTSP Connection Density

Requires no training data Requires data to train the XGBoost
classifier

The approximate GSTP LKH solution
is only able to return the top result as
not all possible paths are explored

Returns a list of all possible candidates
in order of score

Time complexity of LKH is O(nL2)
where n = number of nodes in graph,
L = number of clusters in graph of

Time complexity is O(N2L2) where
N = number of nodes per cluster,
L = number of clusters in graph

Relies on identifying the path with
minimum cost

Depends on identifying dense and
short-hop connections

4.3.1 Formalisation of Connection Density
For identified keywords in a question we have the set K as defined earlier. For
each keyword Ki we have list Li which consists of all the candidate uris generated
by text search. We have n such candidate lists for each question given by, L =
{L1, L2, L3, ..., Ln}. We consider a probable candidate cim ∈ Li, where m is the
total number of candidates to be considered per keyword, which is the same as
the number of items in each list.

Fig. 4. Connection Density with example: The dotted lines represent corresponding
connections between the nodes in the knowledge base.

The hop distance dKGhops(cki , c
o
j) ∈ Z

+ is number of hops between cki and coj
in the subdivision knowledge graph. If the shortest path from cki and coj requires
the traversal of h edges then dKGhops(cki , c

o
j) = h.

Connection Density is based on the three features: Text similarity based
initial Rank of the List item (Ri) Connection-Count (C) and Hop-Count (H).

118 M. Dubey et al.

Initial Rank of the List (Ri), is generated by retrieving the candidates from
the search index via text search. This is achieved in the preprocessing steps as
mentioned in the Sect. 4. Further, to define C we introduce dConnect.

dConnect(cki , c
o
j) =

{
1 if dKGhops(cki , c

o
j) � 2

0 otherwise
(2)

The Connection-Count C for an candidate c, is the number of connections
from c to candidates in all the other lists divided by the total number n of key-
words spotted. We consider nodes at hop counts of greater than 2 disconnected
because nodes too far away from each other in the knowledge base do not carry
meaningful semantic connection to each other.

C(cki) = 1/n
∑

o|o�=k

j=m∑

j=1

dConnect(cki , c
o
j) (3)

The Hop-Count H for a candidate c, is the sum of distances from c to all the
other candidates in all the other lists divided by the total number of keywords
spotted.

H(cki) = 1/n
∑

o|o�=k

j=m∑

j=1

dKGhops(cki , c
o
j) (4)

4.3.2 Candidate Re-ranking
H, C and Ri constitute our feature space X . This feature space is used to find
the most relevant candidate given a set of candidates for an identified keyword
in the question. We use a machine learning classifier to learn the probability
of being the most suitable candidate c̄i given the set of candidates. The final
list Rf is obtained by re-ranking the candidate lists based on the probability
assigned by the classifier. Ideally, c̄i should be the top-most candidate in Rf .

The training data consists of the features H, C and Ri and a label 1 if the
candidate is the correct, 0 otherwise. For the testing, we apply the learned func-
tion from the classifier f on X for every candidate ∈ ci and get a probability
score for being the most suitable candidate. We perform experiments with three
different classifiers, namely extreme gradient boosting(xgboost), SVM (with a
linear kernel) and logistic regression to re-rank the candidates. The experiments
are done using a 5-fold cross-validation strategy where, for each fold we train the
classifier on the training set and observe the mean reciprocal rank (MRR) of c̄i

on the testing set after re-ranking the candidate lists based on the assigned prob-
ability. The average MRR on 5-fold cross-validation for the three classifiers are
0.905, 0.704 and 0.794 respectively. Hence, we use xgboost as the final classifier
in our subsequent experiments for re-ranking.

EARL 119

4.3.3 Algorithm
We now present a pseudo-code version of the algorithm to calculate the two
features: Connection Density algorithm is used for finding hop count and con-
nection count for each candidate node. We then pass these features to a classifier
for scoring and ranking This algorithm (Algorithm 1 Connection Density) has a
time complexity given by O(N2L2) where N is the number of keywords and L
is the number of candidates for each keyword.

Algorithm 1. Connection Density
function : ConnectionDensity()
input : L , with n number of keywords // an array of arrays

output : Hop-Count H, Connection-Count C
1 dConnectCounter = { } // Count for connections from and to each node

2 dHopCounter = { } // Similarly hop counts for each node

3 foreach La ∈ L do
4 foreach cai ∈ La do
5 dConnectCounter[cai] = 0 // Initialising the dictionary

6 dHopCounter[cai] = 0

7 foreach (La, Lb) ∈ L do
8 foreach cai ∈ La do

9 foreach cbj ∈ Lb do

10 if dKGhops(cai ,c
b
j) <= 2 then

11 dConnectCounter[cai] += 1

12 dConnectCounter[cbj] += 1

13 dHopCounter[cai] += dKGhops(cai ,c
b
j)

14 dHopCounter[cbj] += dKGhops(cai ,c
b
j)

15 foreach (ci, score) ∈ dConnectCounter do
16 C(ci) = dConnectCounter(ci)/n // Normalisation with respect to

number of keywords spotted

17 foreach (ci, score) ∈ dHopCounter do
18 H(ci) = dHopCounter(ci)/n

19 return (Hop-Count H, Connection-Count C)

4.4 Adaptive E/R Learning

EARL uses a series of sequential modules with little to no feedback across them.
Hence, the errors in one module propagate down the line. To trammel this, we
implement an adaptive approach especially for curbing the errors made in the pre-
processing modules. While conducting experiments, it was observed that most
of the errors are in the shallow parsing phase, mainly because of grammatical
errors in LC-QuAD which directly affects the consecutive E/R prediction and
candidate selection steps. If the E/R prediction is erroneous, it will search in a

120 M. Dubey et al.

Fig. 5. Adaptive E/R learning

wrong Elasticsearch index for probable candidate list generation. In such a case
none of the candidates ∈ ci for a keyword would contain c̄i as is reflected by the
probabilities assigned to ci by the re-ranker module. If the maximum probability
assigned to ci is less than a very small threshold value, empirically chosen as 0.01,
we re-do the steps from ER prediction after altering the original prediction. If
the initial assigned probability is entity, we change it to relation and vice-versa,
example Fig. 5. This module is empirically evaluated in Table 5.

5 Evaluation

Data Set: LC-QuAD [23] is the largest complex questions data set available for
QA over KGs. We have annotated this data set to create a gold label data set
for entity and relation linking, i.e. each question now contains the correct KG
entity and relation URIs with their respective text spans in the question. This
annotation was done in a semi-automated process and subsequently manually
verified. The annotated dataset of 5000 questions is publicly available at https://
figshare.com/projects/EARL/28218.

5.1 Experiment 1: Comparison of GTSP, LKH and Connection
Density

Aim: We evaluate hypotheses (H1 and H2) that the connection density and
GTSP can be used for joint linking task. We also evaluate the LKH approxima-
tion solution of GTSP for doing this task. We compare the time complexity of
the three different approaches.

Results: Connection density results in a similar accuracy as that of an exact
GTSP solution with a better time complexity (see Table 3). Connection density
has worse time complexity than approximate GTSP solver LKH if we assume the
best case of equal cluster sizes for LKH. However, it provides a better accuracy.
Moreover, the average time taken in EARL using connection density (including
the candidate generation step) is 0.42 s per question. Further observing Table 3,
we can see that the brute force GTSP solution and Connection Density have simi-
lar accuracy, but the brute force GTSP solution has exponential time complexity.
The approximate solution LKH has polynomial run time, but its accuracy drops

https://figshare.com/projects/EARL/28218
https://figshare.com/projects/EARL/28218

EARL 121

Table 3. Empirical comparison of Connection Density and GTSP: n = number of
nodes in graph; L = number of clusters in graph; N = number of nodes per cluster;
top K results retrieved from ElasticSearch.

Approach Accuracy (K = 30) Accuracy (K = 10) Time complexity

Brute Force GTSP 0.61 0.62 O(n22n)

LKH - GTSP 0.59 0.58 O(nL2)

Connection Density 0.61 0.62 O(N2L2)

compared to the brute force GTSP solution. Moreover, from a question answer-
ing perspective the ranked list offered by the Connection Density approach is
useful since it can be presented to the user as a list of possible correct solu-
tions or used by subsequent processing steps of a QA system. Hence, for further
experiments in this section we used the connection density approach.

5.2 Experiment 2: Evaluating Joint Connectivity and Re-ranker

Aim: Evaluating the performance of Connection Density for predicting the cor-
rect entity and relation candidates from a set of possible E-R candidates. Here
we evaluate hypothesis H2, the correct candidates exhibit relatively dense and
short-hop connections.

Table 4. Evaluation of joint linking performance

Value of k Rf based on Ri Rf based on C,H Rf based on Ri, C,H
k = 10 0.543 0.689 0.708

k = 30 0.544 0.666 0.735

k = 50 0.543 0.617 0.737

k = 100 0.540 0.534 0.733

k∗ = 10 0.568 0.864 0.905

k∗ = 30 0.554 0.779 0.864

k∗ = 50 0.549 0.708 0.852

k∗ = 50 0.545 0.603 0.817

Metrics: We use the mean reciprocal rank of the correct candidate c̄i for each
entity/relation in the query. From the probable candidate list generation step, we
fetch a list of top candidates for each identified phrase in a query with a k value
of 10, 30, 50 and 100, where k is the number of results from text search for each
keyword spotted. To evaluate the robustness of our classifier and features we
perform two tests. (i) On the top half of Table 4 we re-rank the top k candidates
returned from the previous step. (ii) On the bottom half of Table 4 we artificially

122 M. Dubey et al.

insert the correct candidate into each list to purely test re-ranking abilities of
our system (this portion of the table contains k∗ as the number of items in each
candidate list). We inject the correct uris at the lowest rank (see k∗), if it was
not retrieved in the top k results from previous step.

Results: The results in Table 4 depict that our algorithm is able to successfully
re-rank the correct URIs if the correct ones are already present. In case correct
URIs were missing in the candidate list, we inserted URIs artificially as the last
candidate. The MRR then increased from 0.568 to 0.905.

5.3 Experiment 3: Evaluating Entity Linking

Aim: To evaluate the performance of EARL with other state-of-the-art systems
on the entity linking task. This also evaluates our hypothesis H3.

Metrics: We are reporting the performance on accuracy. Accuracy is defined
by the ratio of the correctly identified entities over the total number of entities
present.

Result: EARL performs better entity linking than the other systems (Table 5),
namely Babelfy, DBpediaSpotlight, TextRazor and AGDISTIS + FOX (limited
to entity types - LOC, PER, ORG). We conducted this test on the LC-QuAD
and QALD-7 dataset5. The value of k is set to 30 while re-ranking and fetching
the most probable entity.

Table 5. Evaluating EARL’s Entity Linking performance

System Accuracy LC-QuAD Accuracy - QALD

FOX [22] + AGDISTIS [26] 0.36 0.30

DBpediaSpotlight [12] 0.40 0.42

TextRazora 0.52 0.53

Babelfy [13] 0.56 0.56

EARL without adaptive learning 0.61 0.55

EARL with adaptive learning 0.65 0.57
ahttps://www.textrazor.com/.

5.4 Experiment 4: Evaluating Relation Linking

Aim: Given a question, the task is to the perform relation linking in the question.
This also evaluates our hypothesis H3.

Metrics: We use the same accuracy metric as in the Experiment 3.

5 https://project-hobbit.eu/challenges/qald2017/.

https://www.textrazor.com/
https://project-hobbit.eu/challenges/qald2017/

EARL 123

Results: As reported in Table 6, EARL outperforms other approaches we could
run on LC-QuAD and QALD. The large difference in accuracy of relation-linking
over LC-QuAD over QALD, is due to the face that LC-QuAD has 82% questions
with more than one relation, thus detecting relation phrases in the question was
difficult.

Table 6. Evaluating EARL’s Relation Linking performance

System Accuracy LC-QuAD Accuracy - QALD

ReMatch [14] 0.12 0.31

RelMatch [20] 0.15 0.29

EARL without adaptive learning 0.32 0.45

EARL with adaptive learning 0.36 0.47

6 Discussion

Our analysis shows that we have provided two tractable (polynomial with respect
to the number of clusters and the elements per cluster) approaches of solving
the joint entity and relation linking problem. We experimently achieve similar
accuracy as the exact GTSP solution with both LKH-GTSP and Connection
Density with better time complexity, which allows us to use the system in QA
engines in practice. It must be noted that one of the salient features of LKH-
GTSP is that it requires no training data for the disambiguation module while
on the other hand Connection Density performs better given training data for its
XGBoost classifier. While the system was tested on DBpedia, it is not restricted
to a particular knowledge graph.

There are some limitations: The current approach does not tackle questions
with hidden relations, such as “How many shows does HBO have?”. Here the
semantic understanding of the corresponding SPARQL query is to count all
TV shows (dbo:TelevisionShow) which are owned by (dbo:company) the HBO
(dbr:HBO). Here dbo:company is the hidden relation which we do not attempt
to link. However, it could be argued that this problem goes beyond the scope of
relation linking and could be better handled by the query generation phase of a
semantic QA system.

Another limitation is that EARL cannot be used as inference tool for entities
as required by some questions. For example Taikonaut is an astronaut with
Chinese nationality. The system can only link taikonaut to dbr:Astronaut, but
additional information can not be captured. It should be noted, however, that
EARL can tackle the problem of the “lexical gap” to a great extent as it uses
synonyms via the grammar inflection forms.

Our approaches of LKH-GTSP and Connection Density both have poly-
nomial and approximately similar time complexities. EARL with either Con-
nection Density or LKH-GTSP can process a question in a few hundred

124 M. Dubey et al.

milliseconds on a standard desktop computer on average. The result logs,
experimental setup and source code of our system are publicly available at:
https://github.com/AskNowQA/EARL.

7 Conclusions and Future Work

Here we propose EARL, a framework for joint entity and relation linking. We
provided two strategies for joint linking - one based on reducing the problem to
an instance of the Generalised Travelling Salesman problem and the other based
on a connection density based machine learning approach. Our experiments on
QA benchmarks resulted in accuracies which are significantly above the results of
current state-of-the-art approaches for entity and relation linking. In future, we
will improve the candidate generation phase to ensure that a higher proportion
of correct candidates are retrieved.

Acknowledgement. This work is supported by the funding received from the EU
H2020 projects WDAqua (ITN, GA. 642795) and HOBBIT (GA. 688227).

References

1. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from
question-answer pairs. In: EMNLP, vol. 2, p. 6 (2013)

2. Both, A., Diefenbach, D., Singh, K., Shekarpour, S., Cherix, D., Lange, C.: Qanary
– a methodology for vocabulary-driven open question answering systems. In: Sack,
H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC
2016. LNCS, vol. 9678, pp. 625–641. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34129-3 38

3. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug),
2493–2537 (2011)

4. Dubey, M., Dasgupta, S., Sharma, A., Höffner, K., Lehmann, J.: AskNow: a frame-
work for natural language query formalization in SPARQL. In: Sack, H., Blomqvist,
E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS,
vol. 9678, pp. 300–316. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
34129-3 19

5. Gerber, D., Ngomo, A.-C.N.: Bootstrapping the linked data web. In: 1st Workshop
on Web Scale Knowledge Extraction@ ISWC, vol. 2011 (2011)

6. Gubichev, A., Then, M.: Graph pattern matching: do we have to reinvent the
wheel? In: Proceedings of Workshop on GRAph Data. ACM (2014)

7. Helsgaun, K.: Solving the equality generalized traveling salesman problem using the
Lin-Kernighan-Helsgaun algorithm. Math. Program. Comput. 7, 269–287 (2015)

8. Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngonga Ngomo, A.-C.:
Survey on challenges of question answering in the semantic web. Semant. Web 8(6),
895–920 (2017)

9. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

https://github.com/AskNowQA/EARL
https://doi.org/10.1007/978-3-319-34129-3_38
https://doi.org/10.1007/978-3-319-34129-3_38
https://doi.org/10.1007/978-3-319-34129-3_19
https://doi.org/10.1007/978-3-319-34129-3_19
http://arxiv.org/abs/1412.6980

EARL 125

10. Laporte, G., Mercure, H., Nobert, Y.: Generalized travelling salesman problem
through n sets of nodes: the asymmetrical case. Discrete Appl. Math. 18(2), 185–
197 (1987)

11. Lukovnikov, D., Fischer, A., Lehmann, J., Auer, S.: Neural network-based question
answering over knowledge graphs on word and character level. In: Proceedings of
the 26th International Conference on World Wide Web, pp. 1211–1220 (2017)

12. Mendes, P.N., Jakob, M., Garćıa-Silva, A., Bizer, C.: DBpedia spotlight: shedding
light on the web of documents. In: Proceedings of the 7th International Conference
on Semantic Systems, pp. 1–8. ACM (2011)

13. Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambigua-
tion: a unified approach. Trans. Assoc. Comput. Linguist. (2014)

14. Mulang, I.O., Singh, K., Orlandi, F.: Matching natural language relations to knowl-
edge graph properties for question answering. In: Proceedings of the 13th Interna-
tional Conference on Semantic Systems, pp. 89–96. ACM (2017)

15. Nakashole, N., Weikum, G., Suchanek, F.: Patty: a taxonomy of relational pat-
terns with semantic types. In: Proceedings of the EMNLP 2012, pp. 1135–1145.
Association for Computational Linguistics (2012)

16. Park, S., Kwon, S., Kim, B., Lee, G.G.: ISOFT at QALD-5: hybrid question answer-
ing system over linked data and text data. In: CLEF (Working Notes) (2015)

17. Pinter, Y., Guthrie, R., Eisenstein, J.: Mimicking word embeddings using subword
RNNs. In: EMNLP, pp. 102–112 (2017)

18. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In:
Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46523-4 30

19. Serban, I.V., et al.: Generating factoid questions with recurrent neural networks:
the 30m factoid question-answer corpus. arXiv preprint arXiv:1603.06807 (2016)

20. Singh, K., et al.: Capturing knowledge in semantically-typed relational patterns to
enhance relation linking. In: Proceedings of the Knowledge Capture Conference, p.
31. ACM (2017)

21. Singh, K., et al.: Why reinvent the wheel: let’s build question answering systems
together. In: Proceedings of the 2018 World Wide Web Conference on World Wide
Web, pp. 1247–1256. International World Wide Web Conferences Steering Com-
mittee (2018)

22. Speck, R., Ngonga Ngomo, A.-C.: Ensemble learning for named entity recognition.
In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 519–534. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11964-9 33

23. Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for
complex question answering over knowledge graphs. In: d’Amato, C., et al. (eds.)
ISWC 2017. LNCS, vol. 10588, pp. 210–218. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68204-4 22

24. Trudeau, R.J.: Introduction to Graph Theory (corrected, enlarged republication.
ed.) (1993)

25. Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.-C., Gerber, D., Cimiano,
P.: Template-based question answering over RDF data. In: Proceedings of the 21st
International Conference on World Wide Web, pp. 639–648. ACM (2012)

26. Usbeck, R., et al.: AGDISTIS - graph-based disambiguation of named entities using
linked data. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 457–471.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9 29

27. Veyseh, A.P.B.: Cross-lingual question answering using common semantic space.
In: TextGraphs@ NAACL-HLT, pp. 15–19 (2016)

https://doi.org/10.1007/978-3-319-46523-4_30
http://arxiv.org/abs/1603.06807
https://doi.org/10.1007/978-3-319-11964-9_33
https://doi.org/10.1007/978-3-319-68204-4_22
https://doi.org/10.1007/978-3-319-68204-4_22
https://doi.org/10.1007/978-3-319-11964-9_29

126 M. Dubey et al.

28. Xu, K., Zhang, S., Feng, Y., Zhao, D.: Answering natural language questions via
phrasal semantic parsing. In: Zong, C., Nie, J.Y., Zhao, D., Feng, Y. (eds.) Nat-
ural Language Processing and Chinese Computing. CCIS, vol. 496, pp. 333–344.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45924-9 30

29. Yang, Y., Chang, M.-W.: S-mart: novel tree-based structured learning algorithms
applied to tweet entity linking. In: ACL 2015 (2015)

30. Yih, W.-T., Chang, M.-W., He, X., Gao, J.: Semantic parsing via staged query
graph generation: question answering with knowledge base. In: Proceedings of the
53rd ACL Conference, vol. 1, pp. 1321–1331 (2015)

https://doi.org/10.1007/978-3-662-45924-9_30

	EARL: Joint Entity and Relation Linking for Question Answering over Knowledge Graphs
	1 Introduction
	2 Related Work
	3 Overview and Preliminaries
	3.1 Overview and Research Questions
	3.2 Preliminaries

	4 EARL
	4.1 Candidate Generation Steps
	4.2 Using GTSP for Disambiguation
	4.3 Using Connection Density for Disambiguation
	4.4 Adaptive E/R Learning

	5 Evaluation
	5.1 Experiment 1: Comparison of GTSP, LKH and Connection Density
	5.2 Experiment 2: Evaluating Joint Connectivity and Re-ranker
	5.3 Experiment 3: Evaluating Entity Linking
	5.4 Experiment 4: Evaluating Relation Linking

	6 Discussion
	7 Conclusions and Future Work
	References

