
Canonicalisation of Monotone SPARQL
Queries

Jaime Salas and Aidan Hogan(B)

IMFD Chile and Department of Computer Science,
University of Chile, Santiago, Chile

jsalas@dcc.uchile.cl, aidhog@gmail.com

Abstract. Caching in the context of expressive query languages such as
SPARQL is complicated by the difficulty of detecting equivalent queries:
deciding if two conjunctive queries are equivalent is NP-complete, where
adding further query features makes the problem undecidable. Despite
this complexity, in this paper we propose an algorithm that performs syn-
tactic canonicalisation of SPARQL queries such that the answers for the
canonicalised query will not change versus the original. We can guar-
antee that the canonicalisation of two queries within a core fragment
of SPARQL (monotone queries with select, project, join and union) is
equal if and only if the two queries are equivalent; we also support other
SPARQL features but with a weaker soundness guarantee: that the (par-
tially) canonicalised query is equivalent to the input query. Despite the
fact that canonicalisation must be harder than the equivalence problem,
we show the algorithm to be practical for real-world queries taken from
SPARQL endpoint logs, and further show that it detects more equiv-
alent queries than when compared with purely syntactic methods. We
also present the results of experiments over synthetic queries designed to
stress-test the canonicalisation method, highlighting difficult cases.

1 Introduction

SPARQL endpoints often encounter performance problems in practice: in a sur-
vey of hundreds of public SPARQL endpoints, Buil-Aranda et al. [2] found
that many such services have mixed reliability and performance, often return-
ing errors, timeouts or partial results. This is not surprising: SPARQL is an
expressive query language that encapsulates and extends the relational algebra,
where even the simplified decision problem of verifying if a given solution is con-
tained in the answers of a given SPARQL query for a given database is known
to be PSpace-complete [17] (combined complexity). Furthermore, evaluating
SPARQL queries may involve an exponential number of (intermediate) results.
Hence, rather than aiming to efficiently support all queries over all database
instances for all users, the goal is rather to continuously improve performance:
to increase the throughput of the most common types of queries answered.

An obvious means by which to increase throughput of query processing is to
re-use work done for previous queries when answering future queries by caching
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 600–616, 2018.
https://doi.org/10.1007/978-3-030-00671-6_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_35&domain=pdf

Canonicalisation of Monotone SPARQL Queries 601

results. In the context of caching for SPARQL, however, there are some signif-
icant complications. While many engines may apply low-level caches to avoid,
e.g., repeated index accesses, generating answers from such data can still require
a lot of higher-level query processing. On the other hand, caching at the level
of queries or subqueries is greatly complicated by the fact that a given abstract
query can be expressed in myriad equivalent ways in SPARQL.

Addressing the latter challenge, in this paper we propose a method by which
SPARQL queries can be canonicalised, where the canonicalised version of two
queries Q1 and Q2 will be (syntactically) identical if Q1 and Q2 are equivalent :
having the same results for any dataset. Furthermore, we say that two queries Q1

and Q2 are congruent if and only if they are equivalent modulo variable names,
meaning we can rewrite the variables of Q2 in a one-to-one manner to generate a
query equivalent to Q1; our proposed canonicalisation method then aims to give
the same output for queries Q1 and Q2 if and only if they are congruent, which
will allow us to find additional queries useful for applications such as caching.

Example 1. Consider two queries QA and QB asking for names of aunts:
SELECT DISTINCT ?z WHERE {
?x :sister ?y . ?y :name ?z .
{ ?w :mother ?x . }
UNION { ?w :father ?x. } }

SELECT DISTINCT ?n WHERE {
{ ?a :name ?n . ?c :mother ?p . ?p :sister ?a . }
UNION

{ ?a :name ?n . ?c :father ?p . ?p :sister ?a . } }

Both queries are congruent: if we rewrite the variable ?n to ?z in QB , then both
queries are equivalent and will return the same results for any RDF dataset.
Canonicalisation aims to rewrite both queries to the same syntactic form. ��

Our main use-case for canonicalisation is to improve caching for SPARQL
endpoints: by capturing knowledge about query congruence, canonicalisation can
increase the hit rate for a cache of (sub-)queries [16]. Furthermore, canonicali-
sation may be useful for analysis of SPARQL logs: finding repeated/congruent
queries without pair-wise equivalence checks; query processing : where optimisa-
tions can be applied over canonical/normal forms; and so forth.

A fundamental challenge for canonicalising SPARQL queries is the high com-
putational complexity that it entails. More specifically, the query equivalence
problem takes two queries Q1 and Q2 and returns true if and only if they return
the same answers for any database instance. In the case of SPARQL, this prob-
lem is NP-complete even when simply permitting joins (conjunctive queries).
Even worse, the problem becomes undecidable when features such as projection
and optional matches are combined [18]. Canonicalisation is then at least as
hard as the equivalence problem, meaning it will likewise be intractable for even
simple fragments and undecidable when considering the full SPARQL language.

We thus propose a canonicalisation procedure that does not change the
semantics of an input query (i.e., is correct) but may miss congruent queries
(i.e., is incomplete) for certain features. We deem such guarantees to be suffi-
cient for use-cases where completeness is not a strong requirement, as in the case
of caching where missing a congruent query will require re-executing the query
(which would have to be done in any case). For monotone queries [19] in a core
SPARQL fragment, we provide both correctness and completeness guarantees.

602 J. Salas and A. Hogan

The procedure we propose is based on first converting SPARQL queries to a
graph-based (RDF) algebraic representation. We then initially apply canonical
labelling to the graph to consistently name variables, thereafter converting the
graph back to a SPARQL query following a fixed syntactic ordering. The result-
ing query then represents the output of a baseline canonicalisation procedure
for SPARQL. To support further SPARQL features such as UNION, we extend
this procedure by applying normal forms and minimisation over the intermediate
algebraic graph prior to its canonicalisation. Currently we focus on canonicalis-
ing SELECT queries from SPARQL 1.0. However, our canonicalisation techniques
can be extended to other types of queries (ASK, CONSTRUCT, DESCRIBE) as well
as the extended features of SPARQL 1.1 (including aggregation, property paths,
etc.) while maintaining correctness guarantees; this is left to future work.

Extended Version: An online version of this paper provides additional definitions,
proofs, and experimental results [20].

2 Preliminaries

RDF: We first introduce the RDF data model, as well as notions of isomorphism
and equivalence relevant to the canonicalisation procedure discussed later.

Terms and Graphs. RDF assumes three pairwise disjoint sets of terms: IRIs: I,
literals L and blank nodes B. An RDF triple (s, p, o) is composed of three terms
– called subject, predicate and object – where s ∈ IB, p ∈ I and o ∈ ILB.1 A
finite set of RDF triples is called an RDF graph G ⊆ IB × I × IBL.

Isomorphism. Blank nodes are defined as existential variables [10] where two
RDF graphs differing only in blank node labels are thus considered isomor-
phic [7]. Formally, let μ : IBL → IBL denote a mapping of RDF terms to RDF
terms such that μ is the identity on IL (μ(x) = x for all x ∈ IL); we call μ
a blank node mapping ; if μ maps blank nodes to blank nodes in a one-to-one
manner, we call it a blank node bijection. Let μ(G) denote the image of an RDF
graph G under μ (applying μ to each term in G). Two RDF graphs G1 and G2

are defined as isomorphic – denoted G1
∼= G2 – if and only if there exists a blank

node bijection μ such that μ(G1) = G2. Given two RDF graphs, the problem of
determining if they are isomorphic is GI-complete [11], meaning the problem is
in the same complexity class as the standard graph isomorphism problem.

Equivalence. The equivalence relation captures the idea that two RDF graphs
entail each other [10]. Two RDF graphs G1 and G2 are equivalent – denoted
G1 ≡ G2 – if and only if there exists two blank node mappings μ1 and μ2

such that μ1(G1) ⊆ G2 and μ2(G2) ⊆ G1 [8]. A graph may be equivalent to
a smaller graph (due to redundancy). We thus say that an RDF graph G is
lean if it does not have a proper subset G′ ⊂ G such that G ≡ G′; otherwise
1 We use, e.g., IBL as a shortcut for I ∪ B ∪ L.

Canonicalisation of Monotone SPARQL Queries 603

we can say that it is non-lean. Furthermore, we can define the core of a graph
G as a lean graph G′ such that G ≡ G′; the core of a graph is known to be
unique modulo isomorphism [8]. Determining equivalence between RDF graphs
is known to be NP-complete [8]. Determining if a graph G is lean is known to
be coNP-complete [8]. Finally, determining if a graph G′ is the core of a second
graph G is known to be DP-complete [8].

Graph Canonicalisation. Our method for canonicalising SPARQL queries
involves representing the query as an RDF graph, applying canonicalisation tech-
niques over that graph, and mapping the canonical graph back to a SPARQL
query. As such, our query canonicalisation method relies on an existing graph
canonicalisation framework for RDF graphs called Blabel [12]; this framework
offers a sound and complete method to canonicalise graphs with respect to iso-
morphism (iCan(G)) or equivalence (eCan(G)). Both methods have exponential
worst-case behaviour; as discussed, the underlying problems are intractable.

SPARQL. We now provide preliminaries for the SPARQL query language [9].
For brevity, our definitions focus on SPARQL monotone queries (mqs) [19] –
permitting selection (=,∧,∨)2, join, union and projection – for which we can
offer sound and complete canonicalisation.

Syntax. Let V denote a set of query variables disjoint with IBL. We define the
abstract syntax of a SPARQL mq as follows:

1. A triple pattern t is a member of the set VIB × VI × VIBL (i.e., an RDF
triple allowing variables in any position). A triple pattern is a query pattern.

2. If both Q1 and Q2 are query patterns, then [Q1 andQ2], and [Q1 unionQ2]
are also query patterns.

3. If Q is a query pattern and V is a set of variables such that for all v ∈ V , v
appears in some triple pattern contained in Q, then selectV (Q) is a query.3

Blank nodes in SPARQL queries are considered to be non-distinguished
query variables where we will assume they have been replaced with fresh query
variables. Per the final definition, we currently do not support subqueries and
assume, w.l.o.g., that all queries have a projection selectV (Q).

Algebra. We will now define an algebra for such queries. A solution μ is a partial
mapping from variables in V appearing in the query to constants from IBL
appearing in the data. Let dom(μ) denote the variables for which μ is defined.
We say that two mappings μ1 and μ2 are compatible, denoted μ1 ∼ μ2, when
μ1(v) = μ2(v) for every v ∈ dom(μ1) ∩ dom(μ2). Letting M , M1 and M2 denote
sets of solutions, we define the algebra as follows:

M1 �� M2 :={μ1 ∪ μ2 | μ1 ∈ M1, μ2 ∈ M2, μ1 ∼ μ2}
M1 ∪ M2 :={μ | μ ∈ M1 or μ ∈ M2}

πV (M) :={μ′ | ∃μ ∈ M : μ′ ⊆ μ,dom(μ′) = V ∩ dom(μ)}
2 This is expressed by placing constants in triple patterns.
3 Note that SELECT * is equivalent to returning all variables (or omitting the feature).

604 J. Salas and A. Hogan

Union is defined here in the SPARQL fashion as a union of mappings, rather
than relational algebra union: the former can be applied over solution mappings
with different domains, while the latter does not allow this.

Semantics. Letting Q denote an mq pattern in the abstract syntax, we denote
the evaluation of Q over an RDF graph G as Q(G). Before defining Q(G), first let
t denote a triple pattern; then by V(t) we denote the set of variables appearing
in t and by μ(t) we denote the image of t under a solution μ. Finally, we can
define Q(G) recursively as follows:

t(G) := {μ | μ(t) ∈ G,dom(μ) = V(t)}
[Q1 andQ2](G) := Q1(G) �� Q2(G)

[Q1 unionQ2](G) := Q1(G) ∪ Q2(G)
selectV (Q)(G) := πV (Q(G))

Set vs. Bag. The previous definitions assume a set semantics for query answer-
ing, meaning that no duplicate mappings are returned as solutions [17]. However,
the SPARQL standard, by default, considers a bag (aka. multiset) semantics for
query answering [9], where the cardinality of a solution in the results captures
information about how many times the query pattern matched the underlying
dataset [1]. We thus use the extended syntax selectΔ

V (Q), where Δ = true
indicates set semantics and Δ = false indicates bag semantics.

Containment and Equivalence. Query containment asks: given two queries Q1

and Q2, does it hold that Q1(G) ⊆ Q2(G) for all possible RDF graphs G? If so,
we say that Q2 contains Q1, which we denote by the relation Q1 � Q2. On the
other hand, query equivalence asks, given two queries Q1 and Q2, does it hold
that Q1(G) = Q2(G) for all possible RDF graphs G? In other words, Q1 and Q2

are equivalent if and only if Q1 and Q2 contain each other. If so, we say that
Q1 ≡ Q2. In this paper, we relax the equivalence notion to ignore labelling of
variables; more formally, let ν : V → V be a one-to-one mapping of variables
and, slightly abusing notation, let ν(Q) denote the image of Q under ν (rewriting
variables in Q wrt. ν); we say that Q1 and Q2 are congruent (denoted Q1

∼= Q2)
if and only if there exists ν such that Q1 ≡ ν(Q2). An example of such query
congruence was provided in Example 1.

The complexity of query containment and equivalence vary from NP-
complete when just and is allowed (with triple patterns), upwards to undecid-
able once, e.g., projection and optional matches are added [18]. For mqs, con-
tainment and equivalence are NP-complete for the related query class of Unions
of Conjunctive Queries (ucqs) [19], which allow the same features as mqs but
disallow joins over unions. Interestingly, though mqs and ucqs are equivalent
query classes – i.e., for any ucq there is an equivalent mq and vice-versa – con-
tainment and equivalence for mqs jumps to ΠP

2 -complete [19]. Intuitively this
is because mqs are more succinct than ucqs; for example, to find a path of
length n where each node is of type A or B, we can create an mq of size O(n),

Canonicalisation of Monotone SPARQL Queries 605

but it requires a ucq of size O(2n). We consider mqs since real-world SPARQL
queries may arbitrarily nest joins and unions (canonicalisation will rewrite them
to ucqs).

Most of the above results have been developed under set semantics. In terms
of bag semantics, we can consider an analogous containment problem: that the
answers of Q1 are a subbag of the answers of Q2, meaning that the multiplicity of
an answer in Q1 is always less-than-or-equals the multiplicity of the same answer
in Q2. In fact, the decidability of this problem remains an open question [4]; on
the other hand, the equivalence problem is GI-complete [4], and thus in fact
probably easier than the case for set semantics (assuming GI �= NP): under bag
semantics, conjunctive queries cannot have redundancy, so intuitively speaking
we can test a form of isomorphism between the two queries.

3 Related Work

Various works have presented complexity results for query containment and
equivalence of SPARQL [5,13,14,18,23,24]. With respect to implementations,
only one dedicated library has been released to check whether or not two
SPARQL queries are equivalent: SPARQL Algebra [14]. The problem of deter-
mining equivalence of SPARQL queries can, however, be solved by reductions to
related problems, where Chekol et al. [6] have used a μ-calculus solver and an
XPath-equivalence checker to implement SPARQL equivalence checks. Recently
Saleem et al. [22] compared these SPARQL query containment methods using a
benchmark based on real-world query logs; we use these same logs in our evalua-
tion. These works do not deal with canonicalisation; using an equivalence checker
would require quadratic pairwise checks to determine all equivalences in a set or
stream of queries; hence they are impractical for a use-case such as caching.

To the best of our knowledge, little work has been done specifically on canon-
icalisation of SPARQL queries. In analyses of logs, some authors [3,21] have
proposed some syntactic canonicalisation methods – such as normalising whites-
pace or using a SPARQL library to format the query – that do manage to detect
some duplicates, but not more complex cases such as per Example 1. Rather
the most similar work to ours (to the best of our knowledge) is the SPARQL
caching system proposed by Papailiou et al. [16], which uses a canonical labelling
algorithm (specifically Bliss) to assign consistent labels to variables, allowing to
recall isomorphic graph patterns from the cache for SPARQL queries. However,
their work does not consider factoring out redundancy caused by query oper-
ators (aka. minimisation), and hence they would not capture equivalences as
in the case of Example 1. In general, our work focuses on canonicalisation of
queries whereas the work of Papailiou et al. [16] is rather focused on caching;
compared to them we capture a much broader notion of query equivalence than
their approach based solely on canonical labelling of query variables. It is worth
noting that we are not aware of similar methods for canonicalising SQL queries.

606 J. Salas and A. Hogan

4 Query Canonicalisation

Our approach for canonicalising SPARQL mqs involves representing the query
as an RDF graph, performing a canonicalisation of the RDF graph (including
the application of algebraic rewritings, minimisation and canonical labelling),
ultimately mapping the resulting graph back to a final canonical SPARQL ucq.

4.1 Representational Graph for UCQs

The mq class is closed under join and union (see QA, Example 1). As the
first query normalisation step, we will convert mq queries to ucqs of the form
selectΔV (union({and({Q1

1, . . . Q
1
m}), . . . , and({Qk

1 , . . . Q
k
n})})) following a standard

DNF-style expansion (we refer to the extended version for more details [20]).
The output ucq may be exponential in size. Thereafter, given such a ucq, we
define its representational graph (or r-graph for short) as follows.

Definition 1. Let β() denote a function that returns a fresh blank node and β(x)
a function that returns a blank node unique to x. Let ι(·) denote an id function
such that if x ∈ IL, then ι(x) = x; otherwise if x ∈ VB, then ι(x) = β(x).
Finally, let Q be a ucq; we define r(Q), the r-graph of Q, as follows:

– If Q is a triple pattern (s, p, o), then ι(Q) is set as β() and

r(Q) = {(ι(Q), : s, ι(s)), (ι(Q), : p, ι(p)), (ι(Q), : o, ι(o)), (ι(Q), a, : TP)}

– If Q is and({Q1, . . . , Qn}), then ι(Q) is set as β() and

r(Q) = {(ι(Q), : arg, ι(Q1)), . . . , (ι(Q), : arg, ι(Qn)), (ι(Q), a, : And)}
∪r(Q1) ∪ ... ∪ r(Qn)

– If Q is union({Q1, . . . , Qn}), then ι(Q) is set as β() and

r(Q) = {(ι(Q), : arg, ι(Q1)), . . . , (ι(Q), : arg, ι(Qn)), (ι(Q), a, : Union)}
∪r(Q1) ∪ ... ∪ r(Qn)

– If Q is selectΔV (Q1), then ι(Q) is set as β() and

r(Q) = {(ι(Q), : arg, ι(Q1)), (ι(Q), : distinct,Δ), (ι(Q), a, : Select)}
∪ {(ι(Q), : var, ι(v)) | v ∈ V } ∪ r(Q1)

where “a” abbreviates rdf : type and Δ is a boolean datatype literal. ��

Example 2. Here we provide an example of the r-graph for query QA and QB in
Example 1: the r-graph has the same structure for both queries assuming that
a ucq normal form is applied beforehand (to QA in particular). For clarity, we

Canonicalisation of Monotone SPARQL Queries 607

embed the types of nodes into the nodes themselves; e.g., the uppermost node
expands to .

Due to the application of ucq normal forms, we have a projection, over a union,
over a set of joins, where each join involves one or more triple patterns. ��

We also define the inverse r−(r(Q)), mapping an r-graph back to a ucq
query, such that r−(r(Q)) is congruent to the Q [20].

4.2 Projection with Union

Unlike the relational algebra, SPARQL mqs allow unions of query patterns whose
sets of variables are not equal. This may give rise to existential variables, which
in turn can lead to further equivalences that must be considered [19].

Example 3. Returning to Example 1, consider a query QC ≡ QB , a minor variant
of QB using different non-projected variables in the union:

SELECT DISTINCT ?n WHERE { { ?a :name ?n . ?c :mother ?m . ?m :sister ?a . }
UNION { ?a :name ?n . ?c :father ?f . ?f :sister ?a . } }

Such unions are permitted in SPARQL. Likewise we could rename both occur-
rences of ?a on the left of the union in QC without changing the solutions since
?a is not projected. Any correspondences between non-projected variables across
a union are thus syntactic and do not affect the semantics of the query. ��

We thus distinguish the blank node representing every non-projected variable
in each cq of the r-graph produced previously. Letting G denote r(Q), we define
the cq roots of G as cq(G) = {y | (y, a, : And) ∈ G}. Given a term r and a
graph G, we define G[r] as the sub-graph of G rooted in r, defined recursively
as G[r]0 = {(s, p, o) ∈ G | s = r}, G[r]i = {(s, p, o) ∈ G | ∃x, y : (x, y, s) ∈
G[r]i−1} ∪ G[r]i−1, with G[r] = G[r]n such that G[r]n = G[r]n+1 (the fixpoint).

We denote the blank nodes representing variables in G by var(G) = {v ∈ B |
∃(s, p) : (s, p, v) ∈ G ∧ p ∈ {: s, : p, : o}}, and we denote the blank nodes repre-
senting unprojected variables in G by uvar(G) = {v ∈ var(G) |� ∃s : (s, : var, v) ∈
G}. Finally we denote the blank nodes representing projected variables in G by
pvar(G) = var(G) \ uvar(G). We can now define how variables are distinguished.

608 J. Salas and A. Hogan

Definition 2. Let G denote r(Q) for a ucq Q. We define the variable distin-
guishing function d(G) as follows. If there does not exist a blank node x such
that (x, a, : Union) ∈ G, then d(G) = G. Otherwise if such a blank node exists,
we define d(G) = {(s, p, δ(o)) | (s, p, o) ∈ G}, where δ(o) = o if o �∈ uvar(G);
otherwise δ(o) = β(r, o) such that r ∈ cq(G) and (s, p, o) ∈ G[r]. ��

In other words, d(G) creates a fresh blank node for each non-projected vari-
able appearing in the representation of a cq in G as previously motivated.

4.3 Minimisation

Under set semantics, ucqs may contain redundancy whereby, for the purposes
of canonicalisation, we will apply minimisation to remove redundant triple pat-
terns while maintaining query equivalence. After applying ucq normalisation,
the r-graph now represents a ucq of the form (Q,V) := (Q1 ∪ . . .∪Qn, V), with
each Q1, . . . , Qn being a cq and V being the set of projected variables. Under set
semantics, we then first remove intra-cq redundancy from the individual cqs;
thereafter we remove inter -cq redundancy from the overall ucq.

Bag Semantics. We briefly note that if projection with bag semantics is selected,
the ucq can only contain one (syntactic) form of redundancy: exact duplicate
triple patterns in the same cq. Any other form of redundancy mentioned pre-
viously – be it intra-cq or inter-cq redundancy – will affect the multiplicity of
results [4]. Hence if bag semantics is selected, we do not apply any redundancy
elimination other than removing duplicate triple patterns in cqs.

Set-Semantics/CQs. We now minimise the individual cqs of the r-graph by com-
puting the core of the sub-graph induced by each cq independently. But before
computing the core, we must ground projected variables to avoid their removal
during minimisation. Along these lines, let G denote an r-graph d(r(Q)) of Q.
We define the grounding of projected variables as follows: L(G) = {(s, p, λ(o)) |
(s, p, o) ∈ G}, where if o denotes a projected variable, λ(o) = : o for : o a fresh
IRI computed for o; otherwise λ(o) = o. We assume for brevity that variable IRIs
created by λ can be distinguished from other IRIs. Finally, let core(G) denote
the core of G. We can then minimise each cq as follows.

Definition 3. Let G denote d(r(Q)). We define the cq-minimisation of G as
c(G) = {core(L(G[x])) | x ∈ cq(G)}. We call C ∈ c(G) a CQ core. ��
Example 4. Consider the following query, QD:

SELECT DISTINCT ?z WHERE {
{ ?w :mother ?x . } UNION { ?w :father ?x. ?x :sister ?y . }

UNION { ?c :mother ?d . ?d :sister ?y . }
?d ?p ?e . ?e :name ?f . ?x :sister ?y . ?y :name ?z }

This query is congruent to the previous queries QA, QB , QC . After applying
ucq normal forms, we end up with the following r-graph for QD:

Canonicalisation of Monotone SPARQL Queries 609

SELECT DISTINCT ?z WHERE {
{ ?w1 :mother ?x1 . ?d1 ?p1 ?e1 . ?e1 :name ?f1 .

?x1 :sister ?y1 . ?y1 :name ?z . }
UNION { ?w2 :father ?x2 . ?x2 :sister ?y2 . ?d2 ?p2 ?e2 .

?e2 :name ?f2 . ?x2 :sister ?y2 . ?y2 :name ?z . }
UNION { ?c3 :mother ?d3 . ?d3 :sister ?y3 . ?d3 ?p3 ?e3 .

?e3 :name ?f3 . ?x3 :sister ?y3 . ?y3 :name ?z . } }

We then replace the blank node for the projected variable ?z with a fresh IRI,
and compute the core of the sub-graph for each cq (the graph induced by
the cq node with type : And and any node reachable from that node in the
directed r-graph). Figure 1 depicts the sub-r-graph representing the third cq
(omitting the : And-typed root node for clarity since it will not affect comput-
ing the core). The dashed sub-graph will be removed from the core per the
map: { :vx3/ :vd3, :t35/ :t32, :t33/ :t32, :vp3/: sister, :ve3/ :vy3,
:t34/ :t36, :vf3/: vz, . . . }, with the other nodes mapped to themselves.
Observe that the projected variable : vz is now an IRI, and hence it cannot
be removed from the graph.

If we consider applying this core computation over all three conjunctive
queries, we would end up with an r-graph corresponding to the following query:

SELECT DISTINCT ?z WHERE {
{ ?w1 :mother ?x1 . ?x1 :sister ?y1 . ?y1 :name ?z }
UNION { ?w2 :father ?x2 . ?x2 :sister ?y2 . ?y2 :name ?z . }
UNION { ?c3 :mother ?d3 . ?d3 :sister ?y3 . ?y3 :name ?z . } }

We see that the projected variable is preserved in all cqs. However, we are still
left with (inter-cq) redundancy between the first and third cqs. ��

Fig. 1. r-graph of a cq showing minimisation by leaning

Set Semantics/UCQs. After minimising individual cqs, we may still be left
with a union containing redundant cqs as highlighted by Example 4. Hence we
must now apply a higher-level minimisation of redundant cqs. While it may be
tempting to simply compute the core of the entire r-graph – as would work for
Example 4 and, indeed, as would also work for unions in the relational algebra –
unfortunately SPARQL union again raises some non-trivial complications [19].

610 J. Salas and A. Hogan

Example 5. Consider the following (unusual) query:

SELECT DISTINCT ?n WHERE { { ?m :cousin ?n . } UNION { ?x ?y ?n . } }

If we were to compute the core over the r-graph for the entire ucq, we would
remove the second cq as follows:

This would leave us with the following query:

SELECT DISTINCT ?n WHERE { ?m :cousin ?n . }

But this has changed the query semantics where we lose non-cousin values. ��
Instead, we must check containment between pairs of cqs [19]. Let (Q,V) :=

(Q1 ∪ . . . ∪ Qn, V) denote the ucq under analysis. We need to remove from Q:

1. all Qi (1 ≤ i ≤ n) such that there exists Qj (1 ≤ j < i ≤ n) such that
selectV (Qi) ≡ selectV (Qj); and

2. all Qi (1 ≤ i ≤ n) where there exists Qj (1 ≤ j ≤ n) such that selectV (Qi) �
selectV (Qj) (i.e., proper containment where selectV (Qi) �≡ selectV (Qj));

The former condition removes all but one cq from each group of equiva-
lent cqs while the latter condition removes all cqs that are properly contained
in another cq. With respect to SPARQL union, note that these definitions
apply to cases where cqs have different variables. More explicitly, let V1, . . . , Vn

denote the projected variables appearing in Q1, . . . , Qn, respectively. Observe
that selectVi

(Qi) � selectVj
(Qj) can only hold if Vi = Vj : assume without loss of

generality that v ∈ Vi \Vj , where v must then generate unbounds in Vj , creating
a mapping μ, v ∈ dom(μ), that can never appear in Vi.4

To implement condition (1), let us first assume that all cqs contain all projec-
tion variables such that no unbounds can be returned. Note that in the previous
step we have computed the cores of cqs in c(G) and hence it is sufficient to
check for isomorphism between them; we can thus take the current r-graph Gi

for each Qi and apply iso-canonicalisation of Gi [12], removing any other Qj

(j > i) whose Gj is isomorphic. Thereafter, to implement condition (2), we can
check if there exists a blank node mapping μ such that μ(Gj) ⊆ Gi, for i �= j
(which is equivalent to checking simple entailment : Gi |= Gj [8]).

4 We assume that cqs without variables may generate an empty mapping ({µ} with
dom(µ) = ∅) if the cq is contained in the data, or no mapping ({}) otherwise. This
means we will not remove such cqs (unless they are precisely equal to another cq)
as they will generate a tuple of unbounds in the results if and only if the data match.

Canonicalisation of Monotone SPARQL Queries 611

Now we drop the assumption that all cqs contain all variables in V , mean-
ing that we can generate unbounds. To resolve such cases, we can partition
{Q1, . . . , Qn} into various sets of cqs based on the projected variables they
contain, and then apply equivalence and containment checks in each part.

Definition 4. Let c(G) = {C1, . . . , Cn} denote the cq cores of G = d(r(Q)). A
cq core Ci is in e(G) iff Ci ∈ c(G) and there does not exist a cq core Cj ∈ c(G)
(i �= j) such that: pvar(Ci) = pvar(Cj); and Ci

∼= Cj with j < i or Cj |= Ci. ��
Definition 5. Let e(G) = {C1, . . . , Cn} denote the minimal cq cores of G =
d(r(Q)). Let P = {(s, p, o) ∈ G | ∃(s, a, : Select) ∈ G} and U = {(s, p, o) ∈
G | ∃(s, a, : Union) ∈ G, and p = : arg implies ∃C ∈ e(G) : {o} = cq(C)}. We
define the minimisation of G as m(G) =

⋃
G′∈e(G) L−(G′)∪P ∪U , where L−(G′)

denotes the replacement of variable IRIs with their original blank nodes. ��
The result is an r-graph representing a redundancy-free ucq.

4.4 Canonical Labelling and Query Generation

We take the minimal r-graph e(G) generated by the previous methods and apply
the iso-canonicalisation method iCan(e(G)) to generate canonical labels for the
blank nodes in e(G); having normalised the ucq algebra and removed redun-
dancy, applying this process will finally abstract away the naming of variables in
the original query from the r-graph. Then we are left to map from the r-graph
back to a query, which we do by applying r−(iCan(e(G))); in r−(·), we order
triple patterns in CQs, CQs in UCQs and variables in the projection lexicograph-
ically. The result is the final canonicalised ucq in SPARQL syntax. Soundness
and completeness results for mqs are given in the extended version [20].

4.5 Other Features

We can represent other (non-mq) features of SPARQL (e.g., filters, optional,
etc.) as an r-graph in an analogous manner to that presented here; thereafter,
we can apply canonical labelling over that graph without affecting the semantics
of the underlying query. However, we must be cautious with ucq rewriting and
minimisation techniques. Currently in queries with non-ucq features, we detect
subqueries that are ucqs (i.e., use only join and union) and apply normalisation
only on those ucq subqueries considering any variable also used outside the ucq
as a virtual projected variable. Combined with canonical labelling, this provides
a cautious (i.e., sound but incomplete) canonicalisation of non-mq queries.

4.6 Implementation

We implement the described canonicalisation procedure using two main libraries:
Jena for parsing and executing SPARQL queries; and Blabel for computing the
core of RDF graphs and applying canonical labelling. The containment checks

612 J. Salas and A. Hogan

10−4 10−3 10−2 10−1 100

QCan-Full

QCan-Label

Syntactic

Time (s)

Fig. 2. Runtimes for LSQ queries

Table 1. High-level results for canonical-
ising LSQ queries, including the total time
taken and (max) duplicates (D.) found

Algorithm Time (s) D. Max.D. Queries

Syntactic 211 3,960 12 768,618

QCan-Label 28,066 10,722 40 768,618

QCan-Full 77,022 10,722 40 768,618

over cqs are implemented using SPARQL ASK queries (with Jena). In the fol-
lowing, we refer to our system as QCan: Query Canonicalisation. Source code
is available at https://github.com/RittoShadow/QCan, while a simple online
demo can be found at http://qcan.dcc.uchile.cl/.

5 Evaluation

We now evaluate the proposed canonicalisation procedure for monotone
SPARQL queries. In particular, the main research questions to be empirically
assessed are as follows. RQ1: How is the performance of canonicalisation? RQ2:
How many additional duplicate queries can the canonicalisation process expect to
find versus baseline syntactic methods in a real-world setting? To address these
questions, we present two experimental settings. In the first setting, we apply our
canonicalisation method over queries from the Linked SPARQL Queries (LSQ)
dataset [21], which contains queries taken from the logs of four public SPARQL
endpoints. In the second setting, we create a benchmark of more difficult syn-
thetic queries designed to stress-test the process. All experiments were run on
a single machine with two Intel Xeon E5-2609 V3 CPUs and 32 GB of RAM
running Debian v.7.11.

5.1 Real-World Setting

In the first setting, we perform experiments over queries from endpoint logs taken
from the LSQ dataset [21], where we extract the unique strings for SELECT queries
that could be parsed successfully by Jena (i.e., that were syntactically valid),
resulting in 768,618 queries (see the extended version [20] for details). Over these
queries, we then apply three experiments for increasingly complete and expensive
canonicalisation, as follows. Syntactic: We pass the query through the Jena
SPARQL parser and serialiser, parsing the query into an abstract algebra and
then writing the algebraic query back to a SPARQL query. QCan-Label: We
parse the query, applying canonical labelling to the query variables and reorder-
ing triple patterns according to the order of the canonical labels. QCan-Full:
We apply the entire canonicalisation procedure, including parsing, labelling, ucq
rewriting, minimisation, etc. We can now address our research questions.

(RQ1:) Per Table 1, canonicalising with QCan-Label is 127 times slower
than the baseline Syntactic method, while QCan-Full is 365 times slower

https://github.com/RittoShadow/QCan
http://qcan.dcc.uchile.cl/

Canonicalisation of Monotone SPARQL Queries 613

than Syntactic and 2.7 times slower than QCan-Label; however, even for
the slowest method QCan-Full, the mean canonicalisation time per query is a
relatively modest 100 ms. In more detail, Fig. 2 provides boxplots for the runtimes
over the queries; we see that most queries under the Syntactic canonicalisation
generally take around 0.1–0.3 ms, while most queries under QCan-Label and
QCan-Full take 10–100 ms. We did, however, find queries requiring longer:
approximately 2.5 s in isolated worst cases for QCan-Full.

(RQ2:) Canonicalising with QCan-Label finds 2.7 times more duplicates
than the baseline Syntactic method. On the other hand, canonicalising with
QCan-Full finds no more duplicates than QCan-Label: we believe that this
observation can be explained by the relatively low ratio of true mq queries in
the logs [20], and the improbability of finding redundant patterns in real queries.
The largest set of duplicate queries found was 12 in the case of Syntactic and
40 in the case of QCan-Label and QCan-Full.

5.2 Synthetic Setting

Many queries found in the LSQ dataset are quite simple to canonicalise. In
order to see how the proposed canonicalisation methods perform for more com-
plex queries, we propose two categories of synthetic query: the first category is
designed to test the canonicalisation of cqs, particularly the canonical labelling
and intra-cq minimisation steps; the second category is designed to test the
canonicalisation of ucqs, particularly the ucq rewriting and inter-cq minimi-
sation steps. Both aim at testing performance rather than duplicates found.

Synthetic CQ Setting. In order to test the minimisation of cqs, we select diffi-
cult cases for the canonical labelling and core computation of graphs [12]. More
specifically, we select the following three (undirected) graph schemas:

2D grids: For k ≥ 2, the k-2D-grid contains k2 nodes, each with a coordinate
(x, y) ∈ N

2
1...k, where nodes with distance one are connected; the result is a

graph with 2(k2 − k) edges.
3D grids: For k ≥ 2, the k-3D-grid contains k3 nodes, each with a coordinate

(x, y, z) ∈ N
3
1...k, where nodes with distance one are connected; the result is

a graph with 3(k3 − k2) edges.
Miyazaki: This class of graphs was designed by Miyazaki [15] to enforce a worst-

case exponential behaviour in Nauty-style canonical labelling algorithms.
For k, each graph has 20k nodes and 30k edges.

To create cqs from these graphs, we represent each edge in the undirected
graph by a pair of triple patterns (vi, : p, vj), (vj , : p, vi), with vi, vj ∈ V and : p
a fixed IRI for all edges. In order to ensure that the canonicalisation involves
cq minimisation, we enclose the graph pattern in a SELECT DISTINCT v query,
which provides the most challenging case for canonicalisation: applying set
semantics and projecting (and thus “fixing”) a single query variable v. We then
run the Full canonicalisation feature, which for cqs involves computing the core

614 J. Salas and A. Hogan

10 20 30
10−1

101

103

k

T
im

e
(s
)

2D-Grid

2 4 6 8

102
103
104

k

3D-Grid

0 20 40
103.5

104

104.5

k

Miyazaki

Fig. 3. Runtimes for threes types of synthetic cqs

of the r-graph and applying canonical labelling. Note that under minimisation,
2D-Grid and 3D-Grid graphs collapse down to a core with a single undirected
edge, while Miyazaki graphs collapse down to a core with a 3-cycle.

In Fig. 3 we present the runtimes of the canonicalisation procedure, where
we highlight that the y-axis is presented in log scale. We see that instances of
2d-Grid for k ≤ 10 can be canonicalised in under a second. Beyond that, the
performance of canonicalisation lengthens to seconds, minutes and even hours.

Synthetic MQ Setting. We also performed tests creating mqs in CNF (joins of
unions) of the form (t1,1 ∪ . . . ∪ t1,n) �� . . . �� (tm,1 ∪ . . . ∪ tm,n), where m
is the number of joins, n is the number of unions, and ti,j is a triple pattern
sampled (with replacement) from a k-clique of triples with a fixed predicate
(such that k = m + n) to stress-test the performance of the canonicalisation
procedure, where each such query will be rewritten to a query of size O(nm).
Detailed results are available in the extended paper [20]; in summary, QCan-
Full succeeds up to m = 4, n = 8, taking about 7.4 h, or m = 8, n = 2, taking
3 min; for values of m = 8, n = 4 and beyond, canonicalisation fails.

6 Conclusions

This paper describes a method for canonicalising SPARQL (1.0) queries consid-
ering both set and bag semantics. This canonicalisation procedure – which is
sound for all queries and complete for monotone queries – obviates the need to
perform pairwise containment/equivalence checks in a list/stream of queries and
rather allows for using standard indexing techniques to find congruent queries.
The main use-cases we foresee are query caching, optimisation and log analysis.

Our method is based on (1) representing the SPARQL query as an RDF
graph, over which are applied (2) algebraic ucq rewritings, (3 – in the case of
set semantics) intra-cq and inter-cq normalisation, (4) canonical labelling of
variables and ordering of query syntax, before finally (5) converting the graph
back to a canonical SPARQL query. As such, by representing the query as a
graph, our method leverages existing graph canonicalisation frameworks [12].

Canonicalisation of Monotone SPARQL Queries 615

Though the worst-case complexity of the algorithm is doubly-exponential,
experiments show that canonicalisation is feasible for a large collection of real-
world SPARQL queries taken from endpoint logs. Furthermore, we show that the
number of duplicates detected doubles over baseline syntactic methods. In more
challenging experiments involving synthetic settings, however, we quickly start
to encounter doubly-exponential behaviour, where the canonicalisation method
starts to reach its practical limits. Still, our experiments for real-world queries
suggests that such difficult cases do not arise often in practice.

In future work, we plan to extend our methods to consider other query fea-
tures of SPARQL (1.1), such as subqueries, property paths, negation, and so
forth; we also intend to investigate further into the popular OPTIONAL operator.

Acknowledgements. The work was supported by the Millennium Institute for Foun-
dational Research on Data (IMFD) and by Fondecyt Grant No. 1181896.

References

1. Angles, R., Gutierrez, C.: The multiset semantics of SPARQL patterns. In: Groth,
P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 20–36. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46523-4 2

2. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL web-
querying infrastructure: ready for action? In: Alani, H., et al. (eds.) ISWC 2013.
LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41338-4 18

3. Arias Gallego, M., Fernández, J.D., Mart́ınez-Prieto, M.A., de la Fuente, P.: An
empirical study of real-world SPARQL queries. In: Usage Analysis and the Web of
Data (USEWOD) (2011)

4. Chaudhuri, S., Vardi, M.Y.: Optimization of real conjunctive queries. In: Principles
of Database Systems (PODS), pp. 59–70. ACM Press (1993)

5. Chekol, M.W., Euzenat, J., Genevès, P., Layäıda, N.: SPARQL query containment
under SHI axioms. In: AAAI Conference on Artificial Intelligence (2012)

6. Wudage Chekol, M., Euzenat, J., Genevès, P., Layäıda, N.: Evaluating and bench-
marking SPARQL query containment solvers. In: Alani, H., et al. (eds.) ISWC
2013. LNCS, vol. 8219, pp. 408–423. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41338-4 26

7. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax.
W3C Recommendation, February 2014. http://www.w3.org/TR/rdf11-concepts/

8. Gutierrez, C., Hurtado, C.A., Mendelzon, A.O., Pérez, J.: Foundations of semantic
web databases. J. Comput. Syst. Sci. 77(3), 520–541 (2011)

9. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language. W3C
Recommendation, March 2013. http://www.w3.org/TR/sparql11-query/

10. Hayes, P., Patel-Schneider, P.F.: RDF 1.1 Semantics. W3C Recommendation,
February 2014. http://www.w3.org/TR/rdf11-mt/

11. Hogan, A.: Skolemising blank nodes while preserving isomorphism. In: World Wide
Web Conference (WWW), pp. 430–440. ACM (2015)

12. Hogan, A.: Canonical forms for isomorphic and equivalent RDF graphs: algorithms
for leaning and labelling blank nodes. ACM TWeb 11(4), 22:1–22:62 (2017)

https://doi.org/10.1007/978-3-319-46523-4_2
https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1007/978-3-642-41338-4_26
https://doi.org/10.1007/978-3-642-41338-4_26
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf11-mt/

616 J. Salas and A. Hogan

13. Kaminski, M., Kostylev, E.V.: Beyond well-designed SPARQL. In: International
Conference on Database Theory (ICDT), pp. 5:1–5:18 (2016)

14. Letelier, A., Pérez, J., Pichler, R., Skritek, S.: Static analysis and optimization of
semantic web queries. ACM Trans. Database Syst. 38(4), 25:1–25:45 (2013)

15. Miyazaki, T.: The complexity of McKay’s canonical labeling algorithm. In: Groups
and Computation, II, pp. 239–256 (1997)

16. Papailiou, N., Tsoumakos, D., Karras, P., Koziris, N.: Graph-aware, workload-
adaptive SPARQL query caching. In: ACM SIGMOD International Conference on
Management of Data, pp. 1777–1792. ACM (2015)

17. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (2009)

18. Pichler, R., Skritek, S.: Containment and equivalence of well-designed SPARQL.
In: Principles of Database Systems (PODS), pp. 39–50 (2014)

19. Sagiv, Y., Yannakakis, M.: Equivalences among relational expressions with the
union and difference operators. J. ACM 27(4), 633–655 (1980)

20. Salas, J., Hogan, A.: Canonicalisation of monotone SPARQL queries. Technical
report. http://aidanhogan.com/qcan/extended.pdf

21. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.-C.N.: LSQ: the linked
SPARQL queries dataset. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367,
pp. 261–269. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-
6 15

22. Saleem, M., Stadler, C., Mehmood, Q., Lehmann, J., Ngomo, A.N.: SQCFrame-
work: SPARQL query containment benchmark generation framework. In: Knowl-
edge Capture Conference (K-CAP), pp. 28:1–28:8 (2017)

23. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization.
In: International Conference on Database Theory (ICDT), pp. 4–33. ACM (2010)

24. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking database rep-
resentations of RDF/S stores. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A.
(eds.) ISWC 2005. LNCS, vol. 3729, pp. 685–701. Springer, Heidelberg (2005).
https://doi.org/10.1007/11574620 49

http://aidanhogan.com/qcan/extended.pdf
https://doi.org/10.1007/978-3-319-25010-6_15
https://doi.org/10.1007/978-3-319-25010-6_15
https://doi.org/10.1007/11574620_49

	Canonicalisation of Monotone SPARQL Queries
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Query Canonicalisation
	4.1 Representational Graph for UCQs
	4.2 Projection with Union
	4.3 Minimisation
	4.4 Canonical Labelling and Query Generation
	4.5 Other Features
	4.6 Implementation

	5 Evaluation
	5.1 Real-World Setting
	5.2 Synthetic Setting

	6 Conclusions
	References

