
Query-Based Linked Data Anonymization

Remy Delanaux1(B), Angela Bonifati1, Marie-Christine Rousset2,3,
and Romuald Thion1

1 Université Lyon 1, LIRIS CNRS, Villeurbanne, France
{remy.delanaux,angela.bonifati,romuald.thion}@univ-lyon1.fr

2 Université Grenoble Alpes, CNRS, INRIA, Grenoble INP, Grenoble, France
marie-christine.rousset@imag.fr

3 Institut Universitaire de France, Paris, France

Abstract. We introduce and develop a declarative framework for
privacy-preserving Linked Data publishing in which privacy and util-
ity policies are specified as SPARQL queries. Our approach is data-
independent and leads to inspect only the privacy and utility policies in
order to determine the sequence of anonymization operations applicable
to any graph instance for satisfying the policies. We prove the soundness
of our algorithms and gauge their performance through experiments.

1 Introduction

Linked Open Data (LOD) provides access to continuously increasing amounts of
RDF data that describe properties and links among entities referenced by means
of Uniform Resource Identifiers (URIs). Whereas many organizations, institu-
tions and governments participate to the LOD movement by making their data
accessible and reusable to citizens, the risks of identity disclosure in this pro-
cess are not completely understood. As an example, in smart city applications,
information about users’ journeys in public transportation can help re-identify
the individuals if they are joined with other public data sources by leveraging
quasi-identifiers.

The main problem for data providers willing to publish useful data is to deter-
mine which anonymization operations must be applied to the original dataset in
order to preserve both individuals’ privacy and data utility. For all these reasons,
data providers should have at their disposal the means to readily anonymize their
data prior to publication into the LOD cloud. The majority of the solutions pro-
posed so far and mainly devoted to relational legacy systems rely on variants
of differential privacy as surveyed in [14] or k-anonymity proposed by [18]. Dif-
ferential privacy offers strong mathematical guarantees of non-disclosure of any
factual information by adding noise to the data, with as a counterpart a low
utility of answers returned by precise queries (as opposed to statistical queries).
In a similar fashion, several k-anonymization methods have been developed that
transform the original dataset into clusters containing at least k records with
indistinguishable values over quasi-identifiers. When taken into account, the util-
ity loss is defined by a metric that measures and minimizes the information loss
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 530–546, 2018.
https://doi.org/10.1007/978-3-030-00671-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_31&domain=pdf

Query-Based Linked Data Anonymization 531

between the original dataset and the output of the anonymization algorithm. All
these approaches fall short in empowering the data providers with the capability
of specifying their own privacy and utility policies, and in managing anonymiza-
tion operations as update operations on the data.

In this paper, we present a novel declarative framework that (i) allows the
data providers to specify as queries both the privacy and utility policies they
want to enforce, (ii) checks whether the specified policies are compatible with
each other, and (iii), based on a set of basic update queries, automatically builds
candidate sets of anonymization operations that are guaranteed to transform any
input dataset into a dataset satisfying the required privacy and utility policies.
We provide an algorithm that implements this data-independent method starting
from privacy and utility policies only, and we prove its soundness.

We believe that our framework is tailored for data publishing in the LOD
in which it is important to strike a balance between non-disclosure of informa-
tion (likely to serve as quasi-identifiers when interconnected with LOD links)
and utility preservation for end-users querying the LOD. Our framework is care-
fully designed to meet all these requirements by leveraging at the same time
the expressive power of SPARQL queries and the maturity and effectiveness of
SPARQL query engines. It builds on the common wisdom that queries from data
providers are more and more available through online SPARQL endpoints [3].
Such queries are a valuable resource to understand the real utility needs of users
on publicly available data and to guide the data providers in safe RDF data pub-
lishing. For all these reasons, our approach paves the way to a democratization
of privacy-preserving mechanisms for LOD data.

The paper is organized as follows. Section 2 reviews related work. Section 3
summarizes preliminaries for explaining the query-based model of privacy and
utility that we propose in Sect. 4. Sections 5 and 6 describe respectively our
query-based static anonymization method and its experimental assessment.
Finally, we conclude the paper in Sect. 7 with further research directions.

2 Related Work

Privacy preserving data publishing (PPDP) has been a long-standing research
goal for several research communities, as witnessed by a flurry of work on the
topic [7]. A rich variety of privacy models have been proposed, ranging from
k-anonymity [18] and l-diversity [15] to t-closeness [13] and ε-differential pri-
vacy [6]. For each of the aforementioned methods, one or more attack models
(such as record linkage, attribute linkage, table linkage and probabilistic attack)
are considered, amounting to make two fundamental assumptions: (i) what an
attacker is assumed to know about the victim and (ii) under which conditions a
privacy threat occurs.

Most of these models, first conceived for relational databases, have been
recently extended to the setting of the Semantic Web [12]. Among them, the
privacy model that is definitely the closest to our work is k-anonymity that has
been recently adapted to RDF graphs in [10,17]. These works focus on defining

532 R. Delanaux et al.

operations of generalization, suppression or perturbation to apply to values in
the range of properties known to be quasi-identifiers for persons identification,
along with metrics to measure the resulting loss of information. Our approach
is more generic than theirs and also fully declarative since, by leveraging the
logical foundations of PPDP for Linked Data in [8], it allows the definition of
fine-grained privacy policies specified by queries, and to obtain candidate sets of
anonymization operations allowing to practically enforce the requested privacy
without loosing the desired utility.

Contrarily to [8], which focuses on the computational complexity of checking
whether privacy requirements are fulfilled in Linked Data, we leverage utility
policies as queries for which anonymization operations must preserve the original
answers, and we employ the interactions of privacy and utility policies in a
static analysis method. To the best of our knowledge, our framework is the
first to provide practical algorithms for building candidate sequences of atomic
operations, described as an open research challenge in [8].

An alternative approach to anonymization for protecting against privacy
breaches consists in applying access control methods to Linked Data [11,16,19].
In the Semantic Web setting, when data are described by description logics
ontologies, preliminary results on role-based access control have been obtained
in [1] for the problem of checking whether a sequence of role changes and queries
can infer that an anonymous individual is equal to a known individual. Compared
to access control techniques that perform verification at runtime, we focus on a
static analysis approach executed only once and guaranteeing that the published
datasets do not contain sensitive information.

3 Preliminaries

We introduce the standard notions and concepts for RDF graphs and SPARQL
queries. Let I, L and B be countably infinite pairwise disjoint sets representing
respectively IRIs, literal values (or literals) and blank nodes. IRIs (Internation-
alized Resource Identifiers) are standard identifiers used for denoting any Web
resource described in RDF within the LOD. We denote by T = I∪L∪B the set
of terms, in which we distinguish constants (IRIs and literal values) from blank
nodes. We also assume an infinite set V of variables disjoint from the above
sets. In the examples, variables in V are prefixed with a question mark as in the
SPARQL language.

Definition 1 (RDF graph). An RDF graph is a finite set of RDF triples
(s, p, o), where (s, p, o) ∈ (I ∪ B) × I × (I ∪ L ∪ B).

IRIs appearing in position p into triples denote properties composing the
schema of the RDF graph.

The queries we consider in our work are built on graph patterns that are
made of triples with constants and variables (blank nodes are not allowed).

Definition 2 (Graph pattern). A triple pattern is a triple (s, p, o) ∈ (I ∪
V) × (I ∪ V) × (I ∪ L ∪ V). A graph pattern is a finite set of triple patterns.

Query-Based Linked Data Anonymization 533

We can now define the two types of queries under study along with their
answers. The first type of queries correspond to the standard notion of conjunc-
tive queries, while the second type corresponds to counting queries that are the
basis for simple analytical tasks.

Definition 3 (Conjunctive query). A conjunctive query Q is defined by an
expression SELECT x̄ WHERE G(x̄, ȳ) where G(x̄, ȳ) is a graph pattern and x̄ ∪ ȳ
is the set of its variables, among which x̄ are the result (also called the distin-
guished) variables. A conjunctive query Q is alternatively written as 〈x̄, G〉.

The evaluation of a query 〈x̄, G〉 over an RDF graph DB consists in finding
mappings μ assigning the variables in G to terms such that the set of triples,
denoted μ(G), obtained by replacing with μ(z) each variable z appearing in G,
is included in DB. The corresponding answer is defined as the tuple of terms
μ(x̄) assigned by μ to the result variables.

Definition 4 (Evaluation of a conjunctive query). Let Q be a conjunctive
query defined by 〈x̄, G〉, and let DB an RDF graph. The answer set of Q over
DB is defined by : Ans(Q,DB) = {μ(x̄) | μ(G) ⊆ DB}.
Definition 5 (Counting query). Let Q be a conjunctive query. The query
Count(Q) is a counting query, whose answer over a graph DB is defined by:
Ans(Count(Q),DB) = |Ans(Q,DB)|.

4 Query-Based Policies and Anonymization Operations

Following [8], a privacy policy, represented by a set of conjunctive queries, sat-
isfies the anonymization process if none of the sensitive answers holds in the
resulting dataset. This is achieved by letting the privacy queries return no answer
or, alternatively, answers with blank nodes, as shown in the remainder. We also
model utility policies by sets of queries that can be either conjunctive queries
or counting queries useful for data analytics. For satisfying an utility policy,
the anonymization process must preserve the answers of all the specified utility
queries. We now formally define privacy and utility policies.

Definition 6 (Privacy and utility policies). Let DB be an input RDF
graph, a privacy (resp. utility) policy P (resp. U) is a set of conjunctive
queries (resp. conjunctive or counting queries). Let Anonym(DB) be the result
of an anonymization process of the graph DB by a sequence of anonymization
operators.

A privacy policy P is satisfied on Anonym(DB) if for every P ∈ P and
for any tuple of constants c̄, it holds that: c̄ �∈ Ans(P,Anonym(DB)). An util-
ity policy U is satisfied on Anonym(DB) if for every U ∈ U it holds that:
Ans(U,Anonym(DB)) = Ans(U,DB).

534 R. Delanaux et al.

As usual, we call |P| (resp. |U|) the cardinality of the policy. For a policy P
(resp. U) made of n queries Pi = 〈x̄P

i , GP
i 〉 (resp. m queries Ui = 〈x̄U

i , GU
i 〉) we

call the sum of the cardinalities of their bodies the size of the policy defined by∑n
i=1 |GP

i | (resp.
∑m

i=1 |GU
i |).

The following running example shows that privacy and utility policies might
impose constraints on overlapping portions of a dataset.

Example 1. Consider a privacy policy P = {P1, P2} on data related to public
transportation in a given city, and defined by the two following conjunctive
queries written in concrete SPARQL syntax. The first privacy query expresses
that travelers’ postal addresses are sensitive and shall be protected, and the
second privacy query specifies that the disclosure of users identifiers associated
with geolocation information (like latitude and longitude as given by the user
ticket validation) may also pose a risk (for re-identification by data linkage with
other LOD datasets).

Privacy query P1

SELECT ?ad

WHERE {

?u a tcl:User.

?u vcard:hasAddress ?ad.

}

Privacy query P2

SELECT ?u ?lat ?long

WHERE {

?c a tcl:Journey.

?c tcl:user ?u.

?c geo:latitude ?lat.

?c geo:longitude ?long.

}

As a consequence, any query displaying either users’ addresses or users’ iden-
tifiers together with their geolocation information would infringe this privacy
policy, violating the anonymization of the underlying dataset to be published as
open data. The counterpart utility policy is the set of queries U = {U1, U2}. This
set states that users’ ages and location related to journeys are to be preserved.

Utility query U1

SELECT ?u ?age

WHERE {

?u a tcl:User.

?u foaf:age ?age.

}

Utility query U2

SELECT ?c ?lat ?long

WHERE {

?c a tcl:Journey.

?c geo:latitude ?lat.

?c geo:longitude ?long.

}

Regarding anonymization operations, we extend the notion of suppression func-
tions considered in [8] that replace IRIs with blank nodes by allowing also triple
deletions. The anonymization operations that we consider correspond to update
queries (Definition 7): when evaluated against an RDF graph DB, the update
query DELETE D(x̄) INSERT I(ȳ) WHERE W (x̄, z̄) suppresses all occurrences of
D(x̄) in DB such that W (x̄, ȳ) can be mapped to a subgraph of DB, and inserts
triples corresponding to the pattern I(ȳ). Note that ȳ may contain existen-
tial variables, i.e., variables that do not appear in W (x̄, z̄), and thus cannot be

Query-Based Linked Data Anonymization 535

mapped to terms present in DB. This would lead to add triples with blank
nodes.

Definition 7 (Update query). An update query (or update operation) Qupd

is defined by DELETE D(x̄) INSERT I(ȳ) WHERE W (x̄, z̄) where D (resp. I, W)
is a graph pattern which set of variables is x̄ (resp. ȳ, x̄ ∪ z̄). The result of its
evaluation over an RDF graph DB is defined by:

Result(Qupd,DB) = DB \ {μ(D(x̄))|μ(W (x̄, ȳ)) ⊆ DB}
∪ {μ′(I(ȳ))|μ(W (x̄, z̄)) ⊆ DB}

where μ′ is an extension of μ to fresh blank nodes, i.e. a mapping such that

μ′(x) =

{
μ(x) when x ∈ x̄ ∪ z̄

bnew ∈ B otherwise

A deletion query Qdel is a particular case of update query where the inser-
tion pattern I(ȳ) is empty.

In the following section, we will focus on two kinds of atomic anonymiza-
tion operations that correspond respectively to triple deletions (i.e., partic-
ular case of Definition 7 where D(x̄) is reduced to a triple pattern) and replace-
ment of IRIs by blank nodes (i.e., particular case of Definition 7 where D(x̄)
and I(ȳ) are triple patterns that differ just by the fact that one bound variable
of D(x̄) is replaced with an existential variable in I(ȳ)).

These two atomic anonymization operations are illustrated in Examples 2 and
3 respectively. From now, by slight abuse of notation w.r.t Definition 7, we will
use the SPARQL standard notation [] for denoting single existential variables.

Example 2. In the setting of Example 1 related to transportation data, the fol-
lowing query specifies the operation deleting the addresses of users.

DELETE { ?u vcard:hasAddress ?ad. }

WHERE { ?u a tcl:User.

?u vcard:hasAddress ?ad.}

Example 3. In the same context, this query replaces users’ identifiers related to
a ticket validation by a blank node.

DELETE { ?c tcl:user ?u. }

INSERT { ?c tcl:user []. }

WHERE { ?c a tcl:Journey.

?c tcl:user ?u.

?c geo:latitude ?lat.

?c geo:longitude ?long. }

536 R. Delanaux et al.

5 Finding Candidate Sets of Anonymization Operations

Given privacy and utility policies, the problems of interest that we address in
this paper are named Compatibility and EnumOperations. Both problems
are generic as they are essentially built on the query-based definition of policy
satisfaction, hence they are applicable to larger classes of operations and queries.

Problem 1. The Compatibility problem.

Input : P = {Pi} a privacy policy and U = {Uj} a utility policy
Output: True if there exists a sequence of operations O such that O(DB)

satisfies both P and U for any DB and False otherwise.

Problem 2. The EnumOperations problem.

Input : P = {Pi} a privacy policy and U = {Uj} a utility policy
Output: The set O of all sequences of operations O such that O(DB) satisfies

both P and U for any DB.

An algorithm that solves the EnumOperations problem solves the Com-
patibility problem as well, by checking whether its output is ∅.

The rest of this section is devoted to the design of Algorithm 2 that solves
the EnumOperations problem using update operations (Definition 7) when
P and U are defined by conjunctive queries (Definition 3). We also define an
intermediate step dealing with unitary privacy policies, with Algorithm1. Note
that Algorithm 2 produces a set of sets of operations and not a set of sequences.
As we guarantee that the sets of operations hereby computed solve the problem,
any sequence obtained by reordering these sets would work as well. Hence, the
difference between sets and sequences of operations is fairly immaterial.

If the answer set of Q is preserved by an anonymization process so does
its cardinality, implying that any solution for a non-counting query Q is also a
solution for its counting counterpart Count(Q). Similarly, if a utility query Q is
satisfied, then its counting counterpart Count(Q) is also satisfied. Therefore, we
focus on non-counting queries in Algorithm1. However, the opposite implication
does not hold, hence we may miss some operation that may guarantee a utility
counting query Count(Q) without guaranteeing a utility non-counting query Q.

5.1 Finding Candidate Sets of Operations for Unitary Privacy
Policies

We start with the case where the privacy policy is unitary, i.e. when it is reduced
to a singleton P = {P}. Intuitively, Algorithm1 tries to find edges that are in
the graph pattern GP of the privacy policy P but in none of the utility policy
graph patterns GU

j . For each such an edge, a delete operation is constructed,
and possible update operations are considered. Update operations take place in
two manners: either the subject of the triple is replaced with a blank node, or its
object is replaced with a blank node if it is an IRI. In both cases, the algorithm
looks for three alternatives:

Query-Based Linked Data Anonymization 537

– The triple is part of a path of length ≥ 2 in the privacy graph pattern GP ,
and therefore the update operation breaks the path thus satisfying the privacy
policy P ;

– The replaced subject (resp. object) is also the subject (resp. object) of another
triple in the privacy query graph GP and the update operation breaks the
link between these triples, hence satisfying the privacy policy P ;

– The replaced subject (resp. object) of the triple is also part of the distin-
guished variables x̄ of the privacy policy query, leading to a blank value in
the query results.

The soundness of this algorithm is encapsulated in Theorem1. Due to space
constraints, proofs are available in an online appendix.1 We define the following
helper functions that check if update operations are possible:

check-subject((s, p, o), G) = ∃(s′, p′, s) ∈ G ∨
(∃(s, p′, o′) ∈ G ∧ �σ (σ(s, p′, o′) = σ(s, p, o)))

check-object((s, p, o), G) = ∃(o, p′, o′) ∈ G ∨
(∃(s′, p′, o) ∈ G ∧ �σ (σ(s′, p′, o) = σ(s, p, o)))

Algorithm 1. Find update operations to satisfy a unitary privacy policy
Input : a unitary privacy policy P = {P} with P = 〈x̄P , GP 〉
Input : a utility policy U made of m queries Uj = 〈x̄U

j , GU
j 〉

Output: a set of operations O satisfying both P and U
1 function find-ops-unit(P,U):
2 Let H be the graph GP with all its variables replaced by fresh onesa;
3 Let O := ∅;
4 forall (s, p, o) ∈ H do
5 Let c := true;
6 forall GU

j do
7 forall (s′, p′, o′) ∈ GU

j do
8 if ∃σ (σ(s′, p′, o′) = σ(s, p, o)) then
9 c := false;

10 if c then
11 O := O ∪ {DELETE {(s, p, o)} WHERE H};
12 if check-subject((s, p, o),H) ∨ s ∈ x̄P then
13 O := O ∪ {DELETE {(s, p, o)} INSERT {([], p, o)} WHERE H};

14 if o ∈ I ∧ (check-object((s, p, o),H) ∨ o ∈ x̄P) then
15 O := O ∪ {DELETE {(s, p, o)} INSERT {(s, p, [])} WHERE H};

16 return O;

a I.e., with variables that do not appear in any GU
j .

1 See https://liris.cnrs.fr/∼rdelanau/papers/ISWC2018 appx.pdf.

https://liris.cnrs.fr/~rdelanau/papers/ISWC2018_appx.pdf

538 R. Delanaux et al.

Theorem 1 (Soundness of Algorithm 1). Let P be a privacy policy consist-
ing of a single query and let U be a utility policy. Let O= find-ops-unit(P,U)
computed by Algorithm1. For all o ∈ O, for all RDF graph DB, P and U are
satisfied by o(DB) obtained by applying the update operation o to DB.

The behavior of Algorithm1 is illustrated in the following Example 4.

Example 4 (Example 1 cont’d). Consider the policies P = {P1, P2} and
U = {U1, U2} given in Example 1 with bodies GP

1 , GP
2 , GU

1 and GU
2 ,

respectively. Let us consider two different runs of Algorithm 1. The call to
find-ops-unit(P1,U) produces the following set O1 of operations whereas the
call to find-ops-unit(P2,U) produces O2:

O1 = {DELETE {(?u, vcard :hasAddress, ?ad)} WHERE GP
1 ,

DELETE {(?u, vcard :hasAddress, ?ad)} INSERT {([], vcard :hasAddress, ?ad)} WHERE GP
1 ,

DELETE {(?u, vcard :hasAddress, ?ad)} INSERT {(?u, vcard :hasAddress, [])} WHERE GP
1 }

O2 = {DELETE {(?c, tcl :user, ?u)} WHERE GP
2 ,

DELETE {(?c, tcl :user, ?u)} INSERT {([], tcl :user, ?u)} WHERE GP
2 ,

DELETE {(?c, tcl :user, ?u)} INSERT {(?c, tcl :user, [])} WHERE GP
2 }

Indeed, there is only one way to satisfy P1, U1 and U2: delete or update the
address ?ad of each user ?u as shown in O1. This goes by either deleting it,
replacing the address value by a blank node in the hasAddress triple (possible
since ?ad is also a distinguished variable), or replacing the user with a blank
node (possible since there is another triple originating from the user variable
?u in the policy query body). Notice that the update or deletion of the triple
{?u a tcl:User} is not authorized, because U1 would not be satisfied.

The only acceptable operations for P2, U1 and U2 as shown in O2, are either
to delete the link between users and their journeys, or replace each argument of
this relation with a blank node. Replacing the subject of the considered triple
(the journey variable ?c) is possible since it is also featured as the subject of
other triples in the query body, while replacing the object (the user variable ?u)
is possible since it is a distinguished variable of the privacy query.

5.2 Finding Candidate Sets of Operations for General Privacy
Policies

We now extend the previous algorithm to the general case where P is a set of
n queries. The idea is to compute operations that satisfy each Pi using Algo-
rithm1 and then to distribute the results. The soundness of this algorithm is
encapsulated in Theorem 2 and its associated Corollary 1.

Query-Based Linked Data Anonymization 539

Algorithm 2. Find update operations to satisfy policies
Input : a privacy policy P made of n queries Pi = 〈x̄P

i , GP
i 〉

Input : a utility policy U made of m queries Uj = 〈x̄U
j , GU

j 〉
Output: a set of sets of operations Ops such that each sequence obtained

from ordering any O ∈ Ops satisfies both P and U
1 function find-ops(P,U):
2 Let Ops = {∅};
3 for Pi ∈ P do
4 Let opsi := find-ops-unit(Pi,U);
5 if opsi �= ∅ then Ops := {O ∪ {o′} | O ∈ Ops ∧ o′ ∈ opsi};
6 return Ops;

Theorem 2 (Soundness of Algorithm 2). Let P be a privacy policy and let
U be a utility policy. Let O = find-ops(P,U) and let DB be an RDF graph.
For any set of operations O ∈ O, and for any ordering S of O, P and U are
satisfied by S(DB) obtained by applying to DB the sequence of operations in S.

Theorem 2 guarantees the soundness of all sequences of operations that can
be built from the output of Algorithm2. Corollary 1 leverages this result for the
Compatibility problem.

Corollary 1. Let P be a privacy policy and let U be a utility policy made of
counting and non-counting queries. If find-ops(P,U) �= ∅ then the Compati-
bility problem has True as a solution.

Algorithm 2 guarantees the same robustness to linking attacks as [8]: for
any anonymization DB′ = Anonym(DB) produced using Algorithm 2, its union
with any RDF graph G satisfying the same privacy policy P will also satisfy
P. The reason is that the IRIs possibly common to DB′ and G cannot be the
images of a mapping from any privacy query. Indeed, the operations that have
produced DB′ have either deleted triples corresponding to triples in a privacy
query or have replaced IRIs involved in mappings from privacy queries to DB
with blank nodes (which cannot be joined with blank nodes in G).

The sets of operations produced by Algorithm2 are not equivalent in the
sense that they may delete different sets of triples in the dataset. Moreover,
even for a given set of operations, the choice of a possible reordering of its
operations may have different effects on the dataset. Indeed, deletions and mod-
ifications of triples are not commutative operations but due to the soundness of
the algorithm, every obtained solution satisfies the privacy and utility policies.

Regarding the complexity of Algorithm1, its result O = find-ops-unit(P,U)
grows linearly with the size of P . Indeed, each triple in the body GP of P
produces at most one delete operation and two update operations. However,
regarding the overall complexity of Algorithm2, if each set O of operations O ∈
O = find-ops(P,U) has cardinality |P| by construction, the distribution of
the results obtained by find-ops-unit on line 4 induces an exponential blowup

540 R. Delanaux et al.

on the size of O due to the cartesian product on Line 5. In our experimental
assessment (Sect. 6), we will show that in practice the utility and privacy queries
in P and U oftentimes overlap, thus decreasing drastically the actual number of
sequences output by Algorithm 2, possibly to none.

6 Experimental Study

In this section, we present an empirical study devoted to gauge the efficiency of
our main algorithm (Algorithm 2) and measure various factors that determine
the impact of the overlap and size of the policy queries on its output. The exper-
imental study is organized into three main parts: (1) experimental analysis of
the risk of incompatibility between privacy and utility policies; (2) experimental
evaluation of the impact of the privacy and utility policies on the number of
anonymizations alternatives produced by Algorithm2; (3) experimental evalua-
tion of Algorithm 2 runtime performance.

Setup and Implementation. We adopted gMark [2], a schema-based synthetic
graph and query workload generator, as a benchmark for our experimental study.
We used gMark to define the schema of public transportation data, by including
types and properties observed in real-world smart city open data platforms2.
Due to the static nature of our approach, we only need to use such a schema to
generate query workloads without the need of generating actual graph instances.

Precisely, we defined a schema with 13 data types and 12 properties capturing
information regarding users (including personal data and subscription data for
cardholders), ticket validations and user rides (such as geographic coordinates
of ticket validations and optional subscription-related data), and information on
the transportation network (such as maps). Using gMark, we then built a sample
of 500 randomly generated conjunctive queries upon the aforementioned schema,
each one containing between 1 and 6 distinguished variables with a size ranging
between 1 and 6 triples. As shown in a recent study [3], queries of such size
are the most frequent ones in a large corpus of real-world query logs extracted
from SPARQL endpoints. This further corroborates our assumption that our
query sample is representative of real-world queries formulated by end-users.
To account for the structural variability of real-world queries, experiments were
performed on workloads using different shapes of queries: chain queries, star
queries, star-chain queries and a random mix of star-chain and star queries. For
space reasons, we present the results for star-chain queries only. The full list of
experiments is available in a notebook at the project’s GitHub repository3.

To generate privacy and utility policies, we fix a number of conjunctive
queries to be part of the privacy and utility policies. Then, we randomly pick
as many queries as necessary in the query sample to build the policies based
on this cardinality, while avoiding duplicates in the same policy and in between
both kinds of policies.

2 Notably, the Grand Lyon data website and datasets: https://data.grandlyon.com/.
3 https://github.com/RdNetwork/Declarative-LOD-Anonymizer.

https://data.grandlyon.com/
https://github.com/RdNetwork/Declarative-LOD-Anonymizer

Query-Based Linked Data Anonymization 541

In all our experiments, we have opted for a balanced cardinality between
privacy and utility policies: we have set the policy cardinality equal to 3 for
the experiments in Sects. 6.1 and 6.2, whereas Sect. 6.3 features a more extreme
case for performance testing with policy cardinality equal to 10. Depending on
the experiment, policy size (i.e. the sum of the sizes of the conjunctive queries
defining it) may vary since the picked queries have a varying size from 1 to 6.

The overlap degree between privacy and utility policies plays an important
role in our experiments as a factor likely to impact the results of Algorithm2.
We define it as the ratio between the number of triples appearing in privacy
queries that can be mapped to a triple appearing in a utility query and the total
size of the privacy policy. More formally, let P = {Pi} and U = {Uj} be privacy
and utility policies. The overlap degree between P and U is a real number in
[0 . . . 1] defined as:

∑n
i=1 |{t ∈ GP

i | ∃j ∃t′ ∈ GU
j ∃μ μ(t) = μ(t′)}|

∑n
i=1 |GP

i |
Algorithm 2 returns ∅ as output when it is applied to privacy and utility

policies having an overlap degree equal to 1, which are thus incompatible. In
Sect. 6.1, we will measure the risk of incompatibility between randomly generated
privacy and utility policies by counting the number of cases where this complete
overlap occurs.

All our tests have been performed under Windows 10 on a Intel R© CoreTM

i5-6300HQ CPU machine running at 2.30 GHz and 8 GB of RAM. We have imple-
mented our algorithms using Python 2.7. The code of our working prototype
along with the datasets and results of our experiments are made open-source
and available at the aforementioned project’s GitHub repository.

6.1 Measuring Compatibility Between Privacy and Utility Policies

Our goal is to measure the incompatibility rate of privacy and utility policies
randomly generated with a fixed cardinality of 3 and a varying size.

We have performed two experiments where we vary the size of the privacy
(resp. utility) policy from 6 to 12, which corresponds to privacy (resp. utility)
queries having between 2 and 4 triples, while keeping the size of the utility (resp.
privacy) policy fixed to 9, which corresponds to utility (resp. privacy) queries
with 3 triples. In the first (resp. second) experiment, for each of the 7 privacy
(resp. utility) policy sizes, we launch 200 executions of Algorithm2 and we count
the number of executions returning ∅, which allows to compute the proportion of
incompatible policies. For space reasons, we omit the corresponding histograms
(available in our online notebook) and we describe the obtained results in the
following.

In both experiments, we observed that only 49.2% and 49.3% of the
1400 (i.e., corresponding to 200 runs multiplied by 7 data points) executions
exhibit compatible policies. This result clearly shows the necessity of design-
ing an algorithm which automatically verifies policy incompatibility prior to the

542 R. Delanaux et al.

anonymization process. It also reveals that even small policy cardinalities (equal
to 3 for privacy and utility queries) can already substantially prevent possible
anonymizations.

We also noted in the first experiment that the compatibility rate between
privacy and utility policies tends to grow with the privacy policy size. This
behavior is in clear contrast with the intuition that the more privacy policy
is constrained, the less flexibility we have in satisfying them. The explanation
however is that increasing the size of the privacy policy decreases the risk that
all its triples are mapped with triples in the (fixed size) utility policy, and thus
augments the possibilities of satisfying the privacy and utility policies by triple
deletions.

We observe the opposite trend in the second experiment: the compatibility
rate between privacy and utility policies decreases with the utility policy size.
The reason is that requiring more utility for end-users restrains the possibilities
of deleting data for anonymization purposes.

6.2 Measuring the Number of Anonymization Alternatives

When applied to compatible privacy and utility policies, Algorithm2 computes
the set of all the candidate sets of update operations that satisfy the input
policies. In the worst case, the number of candidate sets corresponds the product
of the sizes of the privacy queries. In this experiment, we want to evaluate how
this number evolves in practice depending on (1) the overlap between privacy
and utility policies, and (2) the total size of the privacy and utility policies.

(a) Depending on overlap (b) Depending on privacy size (c) Depending on utility size

Fig. 1. Candidate set length based on policy overlap, privacy size and utility size

Algorithm 2 has been run on 7000 randomly generated combinations of pri-
vacy and utility policies, thus covering a wide spectrum of combinations exhibit-
ing various overlap degrees with various types of queries. For each execution,
we compute the overlap degree between the input privacy and utility policies
and group results in clusters of 10% before plotting as a boxplot the number of
candidate sets in executions featuring the given overlap degree (Fig. 1a). This
provides a representation of how many alternatives our algorithm provides for

Query-Based Linked Data Anonymization 543

anonymizing a graph, depending on the policies overlap. The boxplot allows to
visualize both extreme values and average trends, given that the randomization
can easily create extreme cases and outlier values.

We can observe that the number of candidate sets quickly decreases when
overlapping grows even slightly. This is easy to understand, given that increas-
ing overlap degree induces that less deletion operations are permitted by the
algorithm. As soon as the overlap degree reaches an high value, our algorithm
provides very few anonymization alternatives since no possible operation exists
to satisfy the given policies.

We use the same experimental settings as in Sect. 6.1 to evaluate how the
number of candidate sets evolves as a function of policy size.

Figure 1b displays the results of this experiment when varying privacy size
with a fixed utility size of 9 triples. We can observe a steady increase of the
number of candidate sets with the privacy size. The explanation for this behavior
is that increasing privacy size (with fixed utility size) provide more possible
operations for the anonymization.

On the other hand, when varying utility size (with fixed privacy size), the
number of candidate sets almost stagnates when increasing the utility size
(Fig. 1c). This means that increasing the size of utility queries, without increas-
ing the number of queries itself, does not significantly reduce the anonymization
opportunities.

In short, this experiment emphasizes the faint influence of utility policies on
possible anonymizations sets, along with the crucial role of privacy policies in
shaping possible anonymization operations.

6.3 Runtime Performance

One of the benefits of dealing with a query-driven static method for anonymiza-
tion is to avoid dealing with the size of an input graph, which could impact
performance by increasing runtime. Our static approach only deals with policy
size when looking for candidate anonymization sets, which is likely to make the
algorithm simple and efficient in general.

To confirm this, we ran the Algorithm 2 for a batch of 100 executions corre-
sponding to input privacy and utility policies of 10 queries each, and we measured
the average running time. As a result, we have obtained an average runtime of
0.843 s over all executions, which turns to be satisfactory in practice.

We can conclude that this static approach provides a fast way to enumerate
all the candidate sets of anonymization operations.

7 Conclusion and Future Work

We presented in this paper a novel query-based approach for Linked Open Data
anonymization under the form of delete and update operations on RDF graphs.
We consider policies as sets of privacy and utility specifications, which can be

544 R. Delanaux et al.

readily written as queries by the data providers. We further designed a data-
independent algorithm to compute sets of anonymization operations guaranteed
to satisfy both privacy and utility policies on any input RDF graph. Our proof-
of-concept open-source implementation confirms the intuition that (i) the larger
is the utility policy, the lesser anonymization operations are available; (ii) the
opposite holds for privacy policy but with a stronger impact on the number of
candidate anonymization operations; (iii) the more privacy and utility policies
are interleaved, the lesser is the number of candidate operations.

Our query-based approach can be combined with ontology-based query
rewriting and thus can support reasoning for first-order rewritable ontological
languages such as RDFS [20], DL-Lite [5] or EL fragments [9]. More precisely,
given a pair of privacy and utility policies made of conjunctive queries defined
over an ontology, each set of anonymization operations returned by Algorithm2
applied to the two sets of their corresponding conjunctive rewritings (obtained
using existing query rewriting algorithms [4,5,9]) will produce datasets that are
guaranteed to satisfy the policies.

It is also important to emphasize that our approach can be combined with
other anonymization approaches (k-anonymity techniques, differential privacy)
after the transformation of an input RDF graph by the application of a sequence
of operations output by Algorithm2.

We are planning several orthogonal research directions for future work. A first
research direction consists in extending the expressivity of the queries considered
in this paper both for defining the policies and the anonymization operations.
More expressive privacy and utility queries (with FILTER, NOT EXISTS, aggre-
gate functions) fits in our general framework (Sect. 4) but requires extensions of
the Sect. 5 algorithms. In addition to triple deletion and IRI replacement with
blank nodes, other anonymization operations can be considered such as value
replacement in triples involving datatype properties and IRI aggregation. The
point is that each of these operations can be defined with (possibly complex)
queries by leveraging SPARQL 1.1 aggregate and update queries as well as calls
to built-in functions.

Another future extension is the study of data-dependent solutions, as opposed
to the data-independent approach introduced in this paper. The proof of The-
orem 1 relies on the fact that all instances of the utility queries are completely
left unmodified by the deletions operations. However, it may happen that some
instances common to the privacy and utility queries are suppressed without
impacting the answers of the utility queries evaluated over a given dataset. An
alternative is thus to consider data-dependent solutions, at the cost of running
the algorithm on the (possibly huge) dataset. Such an approach could be adopted
when no data-independent solution can be found.

Another research direction we envision is to consider an optimization problem
that extends the EnumOperations problem defined in Sect. 5. The optimiza-
tion problem consists in finding optimal sequences of anonymization operations
and not all sequences, where optimality can be defined as minimality w.r.t. a
partial order over sequences of anonymization operations (e.g., their size, or a
distance between the original and resulting datasets.)

Query-Based Linked Data Anonymization 545

Acknowledgements. This work has been supported by the Auvergne-Rhône-Alpes
region through the ARC6 research program for funding Remy Delanaux’s PhD, by the
LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01), the SIDES 3.0 project (ANR-16-
DUNE-0002) funded by the French Program Investissement d’Avenir and the Palse
Impulsion 2016/31 programme (ANR-11-IDEX-0007-02) at UDL.

References

1. Baader, F., Borchmann, D., Nuradiansyah, A.: Preliminary results on the identity
problem in description logic ontologies. In: Description Logics. CEUR Workshop
Proceedings, vol. 1879. CEUR-WS.org (2017)

2. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Lemay, A., Advokaat, N.:
gMark: schema-driven generation of graphs and queries. IEEE Trans. Knowl. Data
Eng. 29(4), 856–869 (2017)

3. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL query
logs. PVLDB 11(2), 149–161 (2017)

4. Bursztyn, D., Goadoué, F., Manolescu, I.: Reformulation-based query answering
in RDF: alternatives and performance. PVLDB 8 (2015)

5. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. 39(3), 385–429 (2007)

6. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

7. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing:
a survey of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010)

8. Grau, B.C., Kostylev, E.V.: Logical foundations of privacy-preserving publishing
of linked data. In: AAAI, pp. 943–949. AAAI Press (2016)

9. Hansen, P., Lutz, C., Seylan, I., Wolter, F.: Efficient query rewriting in the descrip-
tion logic el and beyond. In: IJCAI (2015)

10. Heitmann, B., Hermsen, F., Decker, S.: k – RDF-neighbourhood anonymity:
combining structural and attribute-based anonymisation for linked data. In:
PrivOn@ISWC. CEUR Workshop Proceedings, vol. 1951. CEUR-WS.org (2017)

11. Kirrane, S., Mileo, A., Decker, S.: Access control and the resource description
framework: a survey. Semant. Web 8(2), 311–352 (2017)

12. Kirrane, S., Villata, S., d’Aquin, M.: Privacy, security and policies: a review of
problems and solutions with semantic web technologies. Semant. Web J. 9(2),
153–161 (2018)

13. Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond k-Anonymity
and l-Diversity. In: ICDE, pp. 106–115. IEEE Computer Society (2007)

14. Machanavajjhala, A., He, X., Hay, M.: Differential privacy in the wild: a tutorial
on current practices & open challenges. PVLDB 9(13), 1611–1614 (2016)

15. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
privacy beyond k-anonymity. TKDD 1(1), 3 (2007)

16. Oulmakhzoune, S., Cuppens-Boulahia, N., Cuppens, F., Morucci, S.: Privacy policy
preferences enforced by SPARQL query rewriting. In: ARES, pp. 335–342. IEEE
Computer Society (2012)

17. Radulovic, F., Garćıa-Castro, R., Gómez-Pérez, A.: Towards the anonymisation of
RDF data. In: SEKE, pp. 646–651. KSI Research Inc. (2015)

https://doi.org/10.1007/11787006_1

546 R. Delanaux et al.

18. Sweeney, L.: k-Anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10(5), 557–570 (2002)

19. Villata, S., Delaforge, N., Gandon, F., Gyrard, A.: An access control model for
linked data. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2011. LNCS,
vol. 7046, pp. 454–463. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25126-9 57

20. W3C: RDF schema 1.1 (2004). http://www.w3.org/TR/rdf-schema/

https://doi.org/10.1007/978-3-642-25126-9_57
https://doi.org/10.1007/978-3-642-25126-9_57
http://www.w3.org/TR/rdf-schema/

	Query-Based Linked Data Anonymization
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Query-Based Policies and Anonymization Operations
	5 Finding Candidate Sets of Anonymization Operations
	5.1 Finding Candidate Sets of Operations for Unitary Privacy Policies
	5.2 Finding Candidate Sets of Operations for General Privacy Policies

	6 Experimental Study
	6.1 Measuring Compatibility Between Privacy and Utility Policies
	6.2 Measuring the Number of Anonymization Alternatives
	6.3 Runtime Performance

	7 Conclusion and Future Work
	References

